r“‘ .

University

FPDF Library

RedHat
Enterprise Linux

Manual Pages

A

that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'rmic.1' command

$ man rmic.1

rmic(1) Remote Method Invocation (RMI) Tools rmic(1)
NAME
rmic - Generates stub, skeleton, and tie classes for remote objects
that use the Java Remote Method Protocol (JRMP) or Internet Inter-Orb
protocol (IIOP). Also generates Object Management Group (OMG) Interface
Definition Language (IDL)
SYNOPSIS
rmic [ options ] package-qualified-class-names
options
The command-line options. See Options.
package-qualified-class-names
Class names that include their packages, for example,
java.awt.Color.
DESCRIPTION
Deprecation Note: Support for static generation of Java Remote Method
Protocol (JRMP) stubs and skeletons has been deprecated. Oracle
recommends that you use dynamically generated JRMP stubs instead,
eliminating the need to use this tool for JRMP-based applications. See

the java.rmi.server.UnicastRemoteObject specification at

http://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html

for further information.
The rmic compiler generates stub and skeleton class files using the

Java Remote Method Protocol (JRMP) and stub and tie class files (IIOP

Full credit is given to the above companies including the OS

Page 1/7



protocol) for remote objects. These class files are generated from
compiled Java programming language classes that are remote object
implementation classes. A remote implementation class is a class that
implements the interface java.rmi.Remote. The class names in the rmic
command must be for classes that were compiled successfully with the
javac command and must be fully package qualified. For example, running
the rmic command on the class file name Hellolmpl as shown here creates
the Hellolmpl_Stub.classfile in the hello subdirectory (named for the
class's package):
rmic hello.Hellolmpl
A skeleton for a remote object is a JRMP protocol server-side entity
that has a method that dispatches calls to the remote object
implementation.
A tie for a remote object is a server-side entity similar to a
skeleton, but communicates with the client with the IIOP protocol.
A stub is a client-side proxy for a remote object that is responsible
for communicating method invocations on remote objects to the server
where the actual remote object implementation resides. A client's
reference to a remote object, therefore, is actually a reference to a
local stub.
By default, the rmic command generates stub classes that use the 1.2
JRMP stub protocol version only, as though the -v1.2 option was
specified. The -vcompat option was the default in releases before 5.0.
Use the -iiop option to generate stub and tie classes for the [IOP
protocol. See Options.
A stub implements only the remote interfaces, and not any local
interfaces that the remote object also implements. Because a JRMP stub
implements the same set of remote interfaces as the remote object, a
client can use the Java programming language built-in operators for
casting and type checking. For IIOP, the PortableRemoteObject.narrow
method must be used.

OPTIONS

-bootclasspath path Page 2/7



Overrides the location of bootstrap class files.

-classpath path
Specifies the path the rmic command uses to look up classes.
This option overrides the default or the CLASSPATH environment
variable when it is set. Directories are separated by colons.
The general format for path is: .:<your_path>, for example:
../usr/local/java/classes.

-d directory
Specifies the root destination directory for the generated class
hierarchy. You can use this option to specify a destination
directory for the stub, skeleton, and tie files. For example,
the following command places the stub and skeleton classes
derived from MyClass into the directory
/java/classes/exampleclass.
rmic -d /java/classes exampleclass.MyClass
If the -d option is not specified, then the default behavior is
as if -d . was specified. The package hierarchy of the target
class is created in the current directory, and stub/tie/skeleton
files are placed within it. In some earlier releases of the rmic
command, if the -d option was not specified, then the package
hierarchy was not created, and all of the output files were
placed directly in the current directory.

-extdirs path

Overrides the location of installed extensions.

-9
Enables the generation of all debugging information, including
local variables. By default, only line number information is
generated.

-idl

Causes the rmic command to generate OMG IDL for the classes
specified and any classes referenced. IDL provides a purely
declarative, programming language-independent way to specify an

API for an object. The IDL is used as a specification for Page 3/7



methods and data that can be written in and called from any

language that provides CORBA bindings. This includes Java and

C++ among others. See Java IDL: IDL to Java Language Mapping at

http://docs.oracle.com/javase/8/docs/technotes/guides/idl/mapping/jidiMapping.html

When the -idl option is used, other options also include:

? The -always or -alwaysgenerate options force regeneration even
when existing stubs/ties/IDL are newer than the input class.

? The -factory option uses the factory keyword in generated IDL.

? The -idIModule from JavaPackage][.class]toIDLModule specifies
IDLEnNtity package mapping, for example: -idiModulemy.module
my::real::idimod.

? -idIFilefromJavaPackage].class] toIDLFile specifies IDLEnNtity
file mapping, for example: -idIFile test.pkg.X TEST16.idl.

-iiop

Causes the rmic command to generate [IOP stub and tie classes,

rather than JRMP stub and skeleton classes. A stub class is a

local proxy for a remote object and is used by clients to send

calls to a server. Each remote interface requires a stub class,

which implements that remote interface. A client reference to a

remote object is a reference to a stub. Tie classes are used on

the server side to process incoming calls, and dispatch the

calls to the proper implementation class. Each implementation

class requires a tie class.

If you call the rmic command with the -iiop, then it generates

stubs and ties that conform to this naming convention:

_<implementationName>_stub.class

_<interfaceName>_tie.class

? When you use the -iiop option, other options also include:

? The -always or -alwaysgenerate options force regeneration even
when existing stubs/ties/IDL are newer than the input class.

? The -nolocalstubs option means do not create stubs optimized
for same-process clients and servers.

? The -noValueMethods option must be used with the -idl option. Page 4/7



The -noValueMethods option prevents the addition of valuetype
methods and initializers to emitted IDL. These methods and
initializers are optional for valuetypes, and are generated
unless the -noValueMethods option is specified with the -idl
option.

? The -poa option changes the inheritance from
org.omg.CORBA_2_3.portable.Objectimpl to
org.omg.PortableServer.Servant. The PortableServer module for
the Portable Object Adapter (POA) defines the native Servant
type. In the Java programming language, the Servant type is
mapped to the Java org.omg.PortableServer.Servant class. It
serves as the base class for all POA servant implementations
and provides a number of methods that can be called by the
application programmer, and methods that are called by the POA
and that can be overridden by the user to control aspects of
servant behavior. Based on the OMG IDL to Java Language
Mapping Specification, CORBA V 2.3.1 ptc/00-01-08.pdf..RE

-J
Used with any Java command, the -J option passes the argument
that follows the -J (no spaces between the -Jand the argument)
to the Java interpreter

-keep or -keepgenerated
Retains the generated .java source files for the stub,
skeleton, and tie classes and writes them to the same
directory as the.class files.

-nowarn
Turns off warnings. When the -nowarn options is used. The
compiler does not print out any warnings.

-nowrite
Does not write compiled classes to the file system.

-vcompat (deprecated)

Generates stub and skeleton classes that are compatible with

both the 1.1 and 1.2 JRMP stub protocol versions. This option

Page 5/7



was the default in releases before 5.0. The generated stub
classes use the 1.1 stub protocol version when loaded in a JDK
1.1 virtual machine and use the 1.2 stub protocol version when
loaded into a 1.2 (or later) virtual machine. The generated
skeleton classes support both 1.1 and 1.2 stub protocol
versions. The generated classes are relatively large to
support both modes of operation. Note: This option has been
deprecated. See Description.

-verbose
Causes the compiler and linker to print out messages about
what classes are being compiled and what class files are being
loaded.

-v1.1 (deprecated)
Generates stub and skeleton classes for the 1.1 JRMP stub
protocol version only. The -v1.1 option is only useful for
generating stub classes that are serialization-compatible with
preexisting, statically deployed stub classes that were
generated by the rmic command from JDK 1.1 and that cannot be
upgraded (and dynamic class loading is not being used). Note:
This option has been deprecated. See Description.

-v1.2 (deprecated)
(Default) Generates stub classes for the 1.2 JRMP stub
protocol version only. No skeleton classes are generated
because skeleton classes are not used with the 1.2 stub
protocol version. The generated stub classes do not work when
they are loaded into a JDK 1.1 virtual machine. Note: This
option has been deprecated. See Description.

ENVIRONMENT VARIABLES
CLASSPATH

Used to provide the system a path to user-defined classes.

Directories are separated by colons, for example:

..lusr/local/java/classes.

SEE ALSO Page 6/7



? javac(l)
? java(1)
? Setting the Class Path

JDK 8 21 November 2013 rmic(1)

Page 7/7



