
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sem_overview.7' command

$ man sem_overview.7

SEM_OVERVIEW(7) Linux Programmer's Manual SEM_OVERVIEW(7)

NAME

 sem_overview - overview of POSIX semaphores

DESCRIPTION

 POSIX semaphores allow processes and threads to synchronize their ac?

 tions.

 A semaphore is an integer whose value is never allowed to fall below

 zero. Two operations can be performed on semaphores: increment the

 semaphore value by one (sem_post(3)); and decrement the semaphore value

 by one (sem_wait(3)). If the value of a semaphore is currently zero,

 then a sem_wait(3) operation will block until the value becomes greater

 than zero.

 POSIX semaphores come in two forms: named semaphores and unnamed sema?

 phores.

 Named semaphores

 A named semaphore is identified by a name of the form /somename;

 that is, a null-terminated string of up to NAME_MAX-4 (i.e.,

 251) characters consisting of an initial slash, followed by one

 or more characters, none of which are slashes. Two processes

 can operate on the same named semaphore by passing the same name

 to sem_open(3).

 The sem_open(3) function creates a new named semaphore or opens

 an existing named semaphore. After the semaphore has been Page 1/3

 opened, it can be operated on using sem_post(3) and sem_wait(3).

 When a process has finished using the semaphore, it can use

 sem_close(3) to close the semaphore. When all processes have

 finished using the semaphore, it can be removed from the system

 using sem_unlink(3).

 Unnamed semaphores (memory-based semaphores)

 An unnamed semaphore does not have a name. Instead the sema?

 phore is placed in a region of memory that is shared between

 multiple threads (a thread-shared semaphore) or processes (a

 process-shared semaphore). A thread-shared semaphore is placed

 in an area of memory shared between the threads of a process,

 for example, a global variable. A process-shared semaphore must

 be placed in a shared memory region (e.g., a System V shared

 memory segment created using shmget(2), or a POSIX shared memory

 object built created using shm_open(3)).

 Before being used, an unnamed semaphore must be initialized us?

 ing sem_init(3). It can then be operated on using sem_post(3)

 and sem_wait(3). When the semaphore is no longer required, and

 before the memory in which it is located is deallocated, the

 semaphore should be destroyed using sem_destroy(3).

 The remainder of this section describes some specific details of the

 Linux implementation of POSIX semaphores.

 Versions

 Prior to kernel 2.6, Linux supported only unnamed, thread-shared sema?

 phores. On a system with Linux 2.6 and a glibc that provides the NPTL

 threading implementation, a complete implementation of POSIX semaphores

 is provided.

 Persistence

 POSIX named semaphores have kernel persistence: if not removed by

 sem_unlink(3), a semaphore will exist until the system is shut down.

 Linking

 Programs using the POSIX semaphores API must be compiled with cc

 -pthread to link against the real-time library, librt. Page 2/3

 Accessing named semaphores via the filesystem

 On Linux, named semaphores are created in a virtual filesystem, nor?

 mally mounted under /dev/shm, with names of the form sem.somename.

 (This is the reason that semaphore names are limited to NAME_MAX-4

 rather than NAME_MAX characters.)

 Since Linux 2.6.19, ACLs can be placed on files under this directory,

 to control object permissions on a per-user and per-group basis.

NOTES

 System V semaphores (semget(2), semop(2), etc.) are an older semaphore

 API. POSIX semaphores provide a simpler, and better designed interface

 than System V semaphores; on the other hand POSIX semaphores are less

 widely available (especially on older systems) than System V sema?

 phores.

EXAMPLES

 An example of the use of various POSIX semaphore functions is shown in

 sem_wait(3).

SEE ALSO

 sem_close(3), sem_destroy(3), sem_getvalue(3), sem_init(3),

 sem_open(3), sem_post(3), sem_unlink(3), sem_wait(3), pthreads(7),

 shm_overview(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SEM_OVERVIEW(7)

Page 3/3

