
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sendfile64.2' command

$ man sendfile64.2

SENDFILE(2) Linux Programmer's Manual SENDFILE(2)

NAME

 sendfile - transfer data between file descriptors

SYNOPSIS

 #include <sys/sendfile.h>

 ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

DESCRIPTION

 sendfile() copies data between one file descriptor and another. Be?

 cause this copying is done within the kernel, sendfile() is more effi?

 cient than the combination of read(2) and write(2), which would require

 transferring data to and from user space.

 in_fd should be a file descriptor opened for reading and out_fd should

 be a descriptor opened for writing.

 If offset is not NULL, then it points to a variable holding the file

 offset from which sendfile() will start reading data from in_fd. When

 sendfile() returns, this variable will be set to the offset of the byte

 following the last byte that was read. If offset is not NULL, then

 sendfile() does not modify the file offset of in_fd; otherwise the file

 offset is adjusted to reflect the number of bytes read from in_fd.

 If offset is NULL, then data will be read from in_fd starting at the

 file offset, and the file offset will be updated by the call.

 count is the number of bytes to copy between the file descriptors.

 The in_fd argument must correspond to a file which supports Page 1/3

 mmap(2)-like operations (i.e., it cannot be a socket).

 In Linux kernels before 2.6.33, out_fd must refer to a socket. Since

 Linux 2.6.33 it can be any file. If it is a regular file, then send?

 file() changes the file offset appropriately.

RETURN VALUE

 If the transfer was successful, the number of bytes written to out_fd

 is returned. Note that a successful call to sendfile() may write fewer

 bytes than requested; the caller should be prepared to retry the call

 if there were unsent bytes. See also NOTES.

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 EAGAIN Nonblocking I/O has been selected using O_NONBLOCK and the write

 would block.

 EBADF The input file was not opened for reading or the output file was

 not opened for writing.

 EFAULT Bad address.

 EINVAL Descriptor is not valid or locked, or an mmap(2)-like operation

 is not available for in_fd, or count is negative.

 EINVAL out_fd has the O_APPEND flag set. This is not currently sup?

 ported by sendfile().

 EIO Unspecified error while reading from in_fd.

 ENOMEM Insufficient memory to read from in_fd.

 EOVERFLOW

 count is too large, the operation would result in exceeding the

 maximum size of either the input file or the output file.

 ESPIPE offset is not NULL but the input file is not seekable.

VERSIONS

 sendfile() first appeared in Linux 2.2. The include file <sys/send?

 file.h> is present since glibc 2.1.

CONFORMING TO

 Not specified in POSIX.1-2001, nor in other standards.

 Other UNIX systems implement sendfile() with different semantics and

 prototypes. It should not be used in portable programs. Page 2/3

NOTES

 sendfile() will transfer at most 0x7ffff000 (2,147,479,552) bytes, re?

 turning the number of bytes actually transferred. (This is true on

 both 32-bit and 64-bit systems.)

 If you plan to use sendfile() for sending files to a TCP socket, but

 need to send some header data in front of the file contents, you will

 find it useful to employ the TCP_CORK option, described in tcp(7), to

 minimize the number of packets and to tune performance.

 In Linux 2.4 and earlier, out_fd could also refer to a regular file;

 this possibility went away in the Linux 2.6.x kernel series, but was

 restored in Linux 2.6.33.

 The original Linux sendfile() system call was not designed to handle

 large file offsets. Consequently, Linux 2.4 added sendfile64(), with a

 wider type for the offset argument. The glibc sendfile() wrapper func?

 tion transparently deals with the kernel differences.

 Applications may wish to fall back to read(2)/write(2) in the case

 where sendfile() fails with EINVAL or ENOSYS.

 If out_fd refers to a socket or pipe with zero-copy support, callers

 must ensure the transferred portions of the file referred to by in_fd

 remain unmodified until the reader on the other end of out_fd has con?

 sumed the transferred data.

 The Linux-specific splice(2) call supports transferring data between

 arbitrary file descriptors provided one (or both) of them is a pipe.

SEE ALSO

 copy_file_range(2), mmap(2), open(2), socket(2), splice(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SENDFILE(2)

Page 3/3

