
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'set_mempolicy.2' command

$ man set_mempolicy.2

SET_MEMPOLICY(2) Linux Programmer's Manual SET_MEMPOLICY(2)

NAME

 set_mempolicy - set default NUMA memory policy for a thread and its

 children

SYNOPSIS

 #include <numaif.h>

 long set_mempolicy(int mode, const unsigned long *nodemask,

 unsigned long maxnode);

 Link with -lnuma.

DESCRIPTION

 set_mempolicy() sets the NUMA memory policy of the calling thread,

 which consists of a policy mode and zero or more nodes, to the values

 specified by the mode, nodemask, and maxnode arguments.

 A NUMA machine has different memory controllers with different dis?

 tances to specific CPUs. The memory policy defines from which node

 memory is allocated for the thread.

 This system call defines the default policy for the thread. The thread

 policy governs allocation of pages in the process's address space out?

 side of memory ranges controlled by a more specific policy set by

 mbind(2). The thread default policy also controls allocation of any

 pages for memory-mapped files mapped using the mmap(2) call with the

 MAP_PRIVATE flag and that are only read (loaded) from by the thread and

 of memory-mapped files mapped using the mmap(2) call with the Page 1/5

 MAP_SHARED flag, regardless of the access type. The policy is applied

 only when a new page is allocated for the thread. For anonymous memory

 this is when the page is first touched by the thread.

 The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND, MPOL_IN?

 TERLEAVE, MPOL_PREFERRED, or MPOL_LOCAL (which are described in detail

 below). All modes except MPOL_DEFAULT require the caller to specify

 the node or nodes to which the mode applies, via the nodemask argument.

 The mode argument may also include an optional mode flag. The sup?

 ported mode flags are:

 MPOL_F_STATIC_NODES (since Linux 2.6.26)

 A nonempty nodemask specifies physical node IDs. Linux will not

 remap the nodemask when the process moves to a different cpuset

 context, nor when the set of nodes allowed by the process's cur?

 rent cpuset context changes.

 MPOL_F_RELATIVE_NODES (since Linux 2.6.26)

 A nonempty nodemask specifies node IDs that are relative to the

 set of node IDs allowed by the process's current cpuset.

 nodemask points to a bit mask of node IDs that contains up to maxnode

 bits. The bit mask size is rounded to the next multiple of sizeof(un?

 signed long), but the kernel will use bits only up to maxnode. A NULL

 value of nodemask or a maxnode value of zero specifies the empty set of

 nodes. If the value of maxnode is zero, the nodemask argument is ig?

 nored.

 Where a nodemask is required, it must contain at least one node that is

 on-line, allowed by the process's current cpuset context, (unless the

 MPOL_F_STATIC_NODES mode flag is specified), and contains memory. If

 the MPOL_F_STATIC_NODES is set in mode and a required nodemask contains

 no nodes that are allowed by the process's current cpuset context, the

 memory policy reverts to local allocation. This effectively overrides

 the specified policy until the process's cpuset context includes one or

 more of the nodes specified by nodemask.

 The mode argument must include one of the following values:

 MPOL_DEFAULT Page 2/5

 This mode specifies that any nondefault thread memory policy be

 removed, so that the memory policy "falls back" to the system

 default policy. The system default policy is "local alloca?

 tion"?that is, allocate memory on the node of the CPU that trig?

 gered the allocation. nodemask must be specified as NULL. If

 the "local node" contains no free memory, the system will at?

 tempt to allocate memory from a "near by" node.

 MPOL_BIND

 This mode defines a strict policy that restricts memory alloca?

 tion to the nodes specified in nodemask. If nodemask specifies

 more than one node, page allocations will come from the node

 with the lowest numeric node ID first, until that node contains

 no free memory. Allocations will then come from the node with

 the next highest node ID specified in nodemask and so forth, un?

 til none of the specified nodes contain free memory. Pages will

 not be allocated from any node not specified in the nodemask.

 MPOL_INTERLEAVE

 This mode interleaves page allocations across the nodes speci?

 fied in nodemask in numeric node ID order. This optimizes for

 bandwidth instead of latency by spreading out pages and memory

 accesses to those pages across multiple nodes. However, ac?

 cesses to a single page will still be limited to the memory

 bandwidth of a single node.

 MPOL_PREFERRED

 This mode sets the preferred node for allocation. The kernel

 will try to allocate pages from this node first and fall back to

 "near by" nodes if the preferred node is low on free memory. If

 nodemask specifies more than one node ID, the first node in the

 mask will be selected as the preferred node. If the nodemask

 and maxnode arguments specify the empty set, then the policy

 specifies "local allocation" (like the system default policy

 discussed above).

 MPOL_LOCAL (since Linux 3.8) Page 3/5

 This mode specifies "local allocation"; the memory is allocated

 on the node of the CPU that triggered the allocation (the "local

 node"). The nodemask and maxnode arguments must specify the

 empty set. If the "local node" is low on free memory, the ker?

 nel will try to allocate memory from other nodes. The kernel

 will allocate memory from the "local node" whenever memory for

 this node is available. If the "local node" is not allowed by

 the process's current cpuset context, the kernel will try to al?

 locate memory from other nodes. The kernel will allocate memory

 from the "local node" whenever it becomes allowed by the

 process's current cpuset context.

 The thread memory policy is preserved across an execve(2), and is in?

 herited by child threads created using fork(2) or clone(2).

RETURN VALUE

 On success, set_mempolicy() returns 0; on error, -1 is returned and er?

 rno is set to indicate the error.

ERRORS

 EFAULT Part of all of the memory range specified by nodemask and maxn?

 ode points outside your accessible address space.

 EINVAL mode is invalid. Or, mode is MPOL_DEFAULT and nodemask is

 nonempty, or mode is MPOL_BIND or MPOL_INTERLEAVE and nodemask

 is empty. Or, maxnode specifies more than a page worth of bits.

 Or, nodemask specifies one or more node IDs that are greater

 than the maximum supported node ID. Or, none of the node IDs

 specified by nodemask are on-line and allowed by the process's

 current cpuset context, or none of the specified nodes contain

 memory. Or, the mode argument specified both

 MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES.

 ENOMEM Insufficient kernel memory was available.

VERSIONS

 The set_mempolicy() system call was added to the Linux kernel in ver?

 sion 2.6.7.

CONFORMING TO Page 4/5

 This system call is Linux-specific.

NOTES

 Memory policy is not remembered if the page is swapped out. When such

 a page is paged back in, it will use the policy of the thread or memory

 range that is in effect at the time the page is allocated.

 For information on library support, see numa(7).

SEE ALSO

 get_mempolicy(2), getcpu(2), mbind(2), mmap(2), numa(3), cpuset(7),

 numa(7), numactl(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SET_MEMPOLICY(2)

Page 5/5

