r“‘ ,

University

FPDF Library

Red H at PDF generator;
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'shmop.2' command
$ man shmop.2
SHMOP(2) Linux Programmer's Manual SHMOP(2)
NAME
shmat, shmdt - System V shared memory operations
SYNOPSIS

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

DESCRIPTION
shmat()

shmat() attaches the System V shared memory segment identified by shmid

to the address space of the calling process. The attaching address is

specified by shmaddr with one of the following criteria:

? If shmaddr is NULL, the system chooses a suitable (unused) page-
aligned address to attach the segment.

? If shmaddr isn't NULL and SHM_RND is specified in shmflg, the attach
occurs at the address equal to shmaddr rounded down to the nearest
multiple of SHMLBA.

? Otherwise, shmaddr must be a page-aligned address at which the attach
occurs.

In addition to SHM_RND, the following flags may be specified in the

shmflg bit-mask argument:

SHM_EXEC (Linux-specific; since Linux 2.6.9) Page 1/9



Allow the contents of the segment to be executed. The caller
must have execute permission on the segment.
SHM_RDONLY
Attach the segment for read-only access. The process must have
read permission for the segment. If this flag is not specified,
the segment is attached for read and write access, and the
process must have read and write permission for the segment.
There is no notion of a write-only shared memory segment.
SHM_REMAP (Linux-specific)
This flag specifies that the mapping of the segment should re?
place any existing mapping in the range starting at shmaddr and
continuing for the size of the segment. (Normally, an EINVAL
error would result if a mapping already exists in this address
range.) In this case, shmaddr must not be NULL.
The brk(2) value of the calling process is not altered by the attach.
The segment will automatically be detached at process exit. The same
segment may be attached as aread and as a read-write one, and more
than once, in the process's address space.
A successful shmat() call updates the members of the shmid_ds structure
(see shmctl(2)) associated with the shared memory segment as follows:
? shm_atime is set to the current time.
? shm_Ipid is set to the process-ID of the calling process.
? shm_nattch is incremented by one.
shmdt()
shmdt() detaches the shared memory segment located at the address spec?
ified by shmaddr from the address space of the calling process. The
to-be-detached segment must be currently attached with shmaddr equal to
the value returned by the attaching shmat() call.
On a successful shmdt() call, the system updates the members of the
shmid_ds structure associated with the shared memory segment as fol?
lows:
? shm_dtime is set to the current time.

? shm_lpid is set to the process-ID of the calling process. Page 2/9



? shm_nattch is decremented by one. If it becomes 0 and the segment is
marked for deletion, the segment is deleted.
RETURN VALUE

On success, shmat() returns the address of the attached shared memory

segment; on error, (void *) -1 is returned, and errno is set to indi?

cate the cause of the error.

On success, shmdt() returns 0; on error -1 is returned, and errno is

set to indicate the cause of the error.

ERRORS

When shmat() fails, errno is set to one of the following:

EACCES The calling process does not have the required permissions for
the requested attach type, and does not have the CAP_IPC_OWNER
capability in the user namespace that governs its IPC namespace.

EIDRM shmid points to a removed identifier.

EINVAL Invalid shmid value, unaligned (i.e., not page-aligned and
SHM_RND was not specified) or invalid shmaddr value, or can't
attach segment at shmaddr, or SHM_REMAP was specified and
shmaddr was NULL.

ENOMEM Could not allocate memory for the descriptor or for the page ta?
bles.

When shmdt() fails, errno is set as follows:

EINVAL There is no shared memory segment attached at shmaddr; or,
shmaddr is not aligned on a page boundary.

CONFORMING TO

POSIX.1-2001, POSIX.1-2008, SVr4.

In SVID 3 (or perhaps earlier), the type of the shmaddr argument was

changed from char * into const void *, and the returned type of shmat()

from char * into void *.
NOTES

After a fork(2), the child inherits the attached shared memory seg?

ments.

After an execve(2), all attached shared memory segments are detached

from the process.

Page 3/9



Upon _exit(2), all attached shared memory segments are detached from
the process.
Using shmat() with shmaddr equal to NULL is the preferred, portable way
of attaching a shared memory segment. Be aware that the shared memory
segment attached in this way may be attached at different addresses in
different processes. Therefore, any pointers maintained within the
shared memory must be made relative (typically to the starting address
of the segment), rather than absolute.
On Linux, itis possible to attach a shared memory segment even if it
is already marked to be deleted. However, POSIX.1 does not specify
this behavior and many other implementations do not support it.
The following system parameter affects shmat():
SHMLBA Segment low boundary address multiple. When explicitly specify?
ing an attach address in a call to shmat(), the caller should
ensure that the address is a multiple of this value. This is
necessary on some architectures, in order either to ensure good
CPU cache performance or to ensure that different attaches of
the same segment have consistent views within the CPU cache.
SHMLBA is normally some multiple of the system page size. (On
many Linux architectures, SHMLBA is the same as the system page
size.)
The implementation places no intrinsic per-process limit on the number
of shared memory segments (SHMSEG).
EXAMPLES
The two programs shown below exchange a string using a shared memory
segment. Further details about the programs are given below. First,
we show a shell session demonstrating their use.
In one terminal window, we run the "reader" program, which creates a
System V shared memory segment and a System V semaphore set. The pro?
gram prints out the IDs of the created objects, and then waits for the
semaphore to change value.
$ ./svshm_string_read

shmid = 1114194; semid = 15 Page 4/9



In another terminal window, we run the "writer" program. The "writer"
program takes three command-line arguments: the IDs of the shared mem?
ory segment and semaphore set created by the "reader”, and a string.
It attaches the existing shared memory segment, copies the string to
the shared memory, and modifies the semaphore value.
$ ./svshm_string_write 1114194 15 'Hello, world'
Returning to the terminal where the "reader" is running, we see that
the program has ceased waiting on the semaphore and has printed the
string that was copied into the shared memory segment by the writer:
Hello, world
Program source: svshm_string.h
The following header file is included by the "reader" and "writer" pro?
grams.
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
union semun { [* Used in calls to semctl() */
int val;
struct semid_ds * buf;
unsigned short * array;
#if defined(__linux_)
struct seminfo * __ buf;
#endif
¥
#define MEM_SIZE 4096
Program source: svshm_string_read.c

The "reader" program creates a shared memory segment and a semaphore

Page 5/9



set containing one semaphore. It then attaches the shared memory ob?

ject into its address space and initializes the semaphore value to 1.

Finally, the program waits for the semaphore value to become 0, and af?

terwards prints the string that has been copied into the shared memory

segment by the "writer".

[* svshm_string_read.c

*

Licensed under GNU General Public License v2 or later.

#include "svshm_string.h"

int

main(int argc, char *argv[])

{

int semid, shmid;
union semun arg, dummy;
struct sembuf sop;
char *addr;
[* Create shared memory and semaphore set containing one
semaphore */
shmid = shmget(IPC_PRIVATE, MEM_SIZE, IPC_CREAT | 0600);
if (shmid == -1)
errExit("shmget");
semid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
if (shmid == -1)
errExit("shmget");
[* Attach shared memory into our address space */
addr = shmat(shmid, NULL, SHM_RDONLY);
if (addr == (void *) -1)
errExit("shmat");
[* Initialize semaphore 0 in set with value 1 */
arg.val = 1;
if (semctl(semid, 0, SETVAL, arg) == -1)
errExit("semctl");

printf("shmid = %d; semid = %d\n", shmid, semid);

Page 6/9



[* Wait for semaphore value to become 0 */
sop.sem_num = 0;
sop.sem_op = 0;
sop.sem_flg = 0;
if (semop(semid, &sop, 1) ==-1)
errExit("semop");
[* Print the string from shared memory */
printf("%s\n", addr);
/* Remove shared memory and semaphore set */
if (shmctl(shmid, IPC_RMID, NULL) == -1)
errExit("shmctl");
if (semctl(semid, 0, IPC_RMID, dummy) == -1)
errExit("semctl");
exit(EXIT_SUCCESS);
}
Program source: svshm_string_write.c
The writer program takes three command-line arguments: the IDs of the
shared memory segment and semaphore set that have already been created
by the "reader", and a string. It attaches the shared memory segment
into its address space, and then decrements the semaphore value to 0 in
order to inform the "reader" that it can now examine the contents of
the shared memory.
/* svshm_string_write.c
Licensed under GNU General Public License v2 or later.
*
#include "svshm_string.h"
int
main(int argc, char *argv[])
{
int semid, shmid;
struct sembuf sop;
char *addr;

size_tlen; Page 7/9



if (argc 1= 4) {
fprintf(stderr, "Usage: %s shmid semid string\n", argv[0]);
exit(EXIT_FAILURE);
}
len = strlen(argv[3]) + 1; /* +1 to include trailing 0" */
if (len > MEM_SIZE) {
fprintf(stderr, "String is too bigh\n");
exit(EXIT_FAILURE);
}
[* Get object IDs from command-line */
shmid = atoi(argv[1]);
semid = atoi(argv[2]);
[* Attach shared memory into our address space and copy string
(including trailing null byte) into memory. */
addr = shmat(shmid, NULL, 0);
if (addr == (void *) -1)
errExit("shmat");
memcpy(addr, argv[3], len);
[* Decrement semaphore to 0 */
sop.sem_num = 0;
sop.sem_op = -1;
sop.sem_flg = 0;
if (semop(semid, &sop, 1) ==-1)
errExit("semop");
exit(EXIT_SUCCESS);
}
SEE ALSO
brk(2), mmap(2), shmctl(2), shmget(2), capabilities(7), shm_over?
view(7), sysvipc(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the

latest version of this page, can be found at Page 8/9



https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SHMOP(2)

Page 9/9



