
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'spu_create.2' command

$ man spu_create.2

SPU_CREATE(2) Linux Programmer's Manual SPU_CREATE(2)

NAME

 spu_create - create a new spu context

SYNOPSIS

 #include <sys/types.h>

 #include <sys/spu.h>

 int spu_create(const char *pathname, int flags, mode_t mode,

 int neighbor_fd);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The spu_create() system call is used on PowerPC machines that implement

 the Cell Broadband Engine Architecture in order to access Synergistic

 Processor Units (SPUs). It creates a new logical context for an SPU in

 pathname and returns a file descriptor associated with it. pathname

 must refer to a nonexistent directory in the mount point of the SPU

 filesystem (spufs). If spu_create() is successful, a directory is cre?

 ated at pathname and it is populated with the files described in

 spufs(7).

 When a context is created, the returned file descriptor can only be

 passed to spu_run(2), used as the dirfd argument to the *at family of

 system calls (e.g., openat(2)), or closed; other operations are not de?

 fined. A logical SPU context is destroyed (along with all files cre?

 ated within the context's pathname directory) once the last reference Page 1/5

 to the context has gone; this usually occurs when the file descriptor

 returned by spu_create() is closed.

 The mode argument (minus any bits set in the process's umask(2)) speci?

 fies the permissions used for creating the new directory in spufs. See

 stat(2) for a full list of the possible mode values.

 The neighbor_fd is used only when the SPU_CREATE_AFFINITY_SPU flag is

 specified; see below.

 The flags argument can be zero or any bitwise OR-ed combination of the

 following constants:

 SPU_CREATE_EVENTS_ENABLED

 Rather than using signals for reporting DMA errors, use the

 event argument to spu_run(2).

 SPU_CREATE_GANG

 Create an SPU gang instead of a context. (A gang is a group of

 SPU contexts that are functionally related to each other and

 which share common scheduling parameters?priority and policy.

 In the future, gang scheduling may be implemented causing the

 group to be switched in and out as a single unit.)

 A new directory will be created at the location specified by the

 pathname argument. This gang may be used to hold other SPU con?

 texts, by providing a pathname that is within the gang directory

 to further calls to spu_create().

 SPU_CREATE_NOSCHED

 Create a context that is not affected by the SPU scheduler.

 Once the context is run, it will not be scheduled out until it

 is destroyed by the creating process.

 Because the context cannot be removed from the SPU, some func?

 tionality is disabled for SPU_CREATE_NOSCHED contexts. Only a

 subset of the files will be available in this context directory

 in spufs. Additionally, SPU_CREATE_NOSCHED contexts cannot dump

 a core file when crashing.

 Creating SPU_CREATE_NOSCHED contexts requires the CAP_SYS_NICE

 capability. Page 2/5

 SPU_CREATE_ISOLATE

 Create an isolated SPU context. Isolated contexts are protected

 from some PPE (PowerPC Processing Element) operations, such as

 access to the SPU local store and the NPC register.

 Creating SPU_CREATE_ISOLATE contexts also requires the SPU_CRE?

 ATE_NOSCHED flag.

 SPU_CREATE_AFFINITY_SPU (since Linux 2.6.23)

 Create a context with affinity to another SPU context. This

 affinity information is used within the SPU scheduling algo?

 rithm. Using this flag requires that a file descriptor refer?

 ring to the other SPU context be passed in the neighbor_fd argu?

 ment.

 SPU_CREATE_AFFINITY_MEM (since Linux 2.6.23)

 Create a context with affinity to system memory. This affinity

 information is used within the SPU scheduling algorithm.

RETURN VALUE

 On success, spu_create() returns a new file descriptor. On error, -1

 is returned, and errno is set to one of the error codes listed below.

ERRORS

 EACCES The current user does not have write access to the spufs(7)

 mount point.

 EEXIST An SPU context already exists at the given pathname.

 EFAULT pathname is not a valid string pointer in the calling process's

 address space.

 EINVAL pathname is not a directory in the spufs(7) mount point, or in?

 valid flags have been provided.

 ELOOP Too many symbolic links were found while resolving pathname.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached.

 ENAMETOOLONG

 pathname is too long.

 ENFILE The system-wide limit on the total number of open files has been

 reached. Page 3/5

 ENODEV An isolated context was requested, but the hardware does not

 support SPU isolation.

 ENOENT Part of pathname could not be resolved.

 ENOMEM The kernel could not allocate all resources required.

 ENOSPC There are not enough SPU resources available to create a new

 context or the user-specific limit for the number of SPU con?

 texts has been reached.

 ENOSYS The functionality is not provided by the current system, because

 either the hardware does not provide SPUs or the spufs module is

 not loaded.

 ENOTDIR

 A part of pathname is not a directory.

 EPERM The SPU_CREATE_NOSCHED flag has been given, but the user does

 not have the CAP_SYS_NICE capability.

FILES

 pathname must point to a location beneath the mount point of spufs. By

 convention, it gets mounted in /spu.

VERSIONS

 The spu_create() system call was added to Linux in kernel 2.6.16.

CONFORMING TO

 This call is Linux-specific and implemented only on the PowerPC archi?

 tecture. Programs using this system call are not portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2). Note however, that spu_create() is meant to be used from

 libraries that implement a more abstract interface to SPUs, not to be

 used from regular applications. See ?http://www.bsc.es/projects

 /deepcomputing/linuxoncell/? for the recommended libraries.

 Prior to the addition of the SPU_CREATE_AFFINITY_SPU flag in Linux

 2.6.23, the spu_create() system call took only three arguments (i.e.,

 there was no neighbor_fd argument).

EXAMPLES

 See spu_run(2) for an example of the use of spu_create() Page 4/5

SEE ALSO

 close(2), spu_run(2), capabilities(7), spufs(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SPU_CREATE(2)

Page 5/5

