
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sssd-kcm.8' command

$ man sssd-kcm.8

SSSD-KCM(8) File Formats and Conventions SSSD-KCM(8)

NAME

 sssd-kcm - SSSD Kerberos Cache Manager

DESCRIPTION

 This manual page describes the configuration of the SSSD Kerberos Cache

 Manager (KCM). KCM is a process that stores, tracks and manages

 Kerberos credential caches. It originates in the Heimdal Kerberos

 project, although the MIT Kerberos library also provides client side

 (more details on that below) support for the KCM credential cache.

 In a setup where Kerberos caches are managed by KCM, the Kerberos

 library (typically used through an application, like e.g., kinit(1), is

 a ?"KCM client"? and the KCM daemon is being referred to as a ?"KCM

 server"?. The client and server communicate over a UNIX socket.

 The KCM server keeps track of each credential caches's owner and

 performs access check control based on the UID and GID of the KCM

 client. The root user has access to all credential caches.

 The KCM credential cache has several interesting properties:

 ? since the process runs in userspace, it is subject to UID

 namespacing, unlike the kernel keyring

 ? unlike the kernel keyring-based cache, which is shared between all

 containers, the KCM server is a separate process whose entry point

 is a UNIX socket

 ? the SSSD implementation stores the ccaches in a database, typically Page 1/6

 located at /var/lib/sss/secrets allowing the ccaches to survive KCM

 server restarts or machine reboots.

 This allows the system to use a collection-aware credential cache, yet

 share the credential cache between some or no containers by

 bind-mounting the socket.

 The KCM default client idle timeout is 5 minutes, this allows more time

 for user interaction with command line tools such as kinit.

USING THE KCM CREDENTIAL CACHE

 In order to use KCM credential cache, it must be selected as the

 default credential type in krb5.conf(5), The credentials cache name

 must be only ?KCM:? without any template expansions. For example:

 [libdefaults]

 default_ccache_name = KCM:

 Next, make sure the Kerberos client libraries and the KCM server must

 agree on the UNIX socket path. By default, both use the same path

 /var/run/.heim_org.h5l.kcm-socket. To configure the Kerberos library,

 change its ?kcm_socket? option which is described in the krb5.conf(5)

 manual page.

 Finally, make sure the SSSD KCM server can be contacted. The KCM

 service is typically socket-activated by systemd(1). Unlike other SSSD

 services, it cannot be started by adding the ?kcm? string to the

 ?service? directive.

 systemctl start sssd-kcm.socket

 systemctl enable sssd-kcm.socket

 Please note your distribution may already configure the units for you.

THE CREDENTIAL CACHE STORAGE

 The credential caches are stored in a database, much like SSSD caches

 user or group entries. The database is typically located at

 ?/var/lib/sss/secrets?.

OBTAINING DEBUG LOGS

 The sssd-kcm service is typically socket-activated systemd(1). To

 generate debug logs, add the following either to the

 /etc/sssd/sssd.conf file directly or as a configuration snippet to Page 2/6

 /etc/sssd/conf.d/ directory:

 [kcm]

 debug_level = 10

 Then, restart the sssd-kcm service:

 systemctl restart sssd-kcm.service

 Finally, run whatever use-case doesn't work for you. The KCM logs will

 be generated at /var/log/sssd/sssd_kcm.log. It is recommended to

 disable the debug logs when you no longer need the debugging to be

 enabled as the sssd-kcm service can generate quite a large amount of

 debugging information.

 Please note that configuration snippets are, at the moment, only

 processed if the main configuration file at /etc/sssd/sssd.conf exists

 at all.

RENEWALS

 The sssd-kcm service can be configured to attempt TGT renewal for

 renewable TGTs stored in the KCM ccache. Renewals are only attempted

 when half of the ticket lifetime has been reached. KCM Renewals are

 configured when the following options are set in the [kcm] section:

 tgt_renewal = true

 krb5_renew_interval = 60m

 SSSD can also inherit krb5 options for renewals from an existing

 domain.

 tgt_renewal = true

 tgt_renewal_inherit = domain-name

 The following krb5 options can be configured in the [kcm] section to

 control renewal behavior, these options are described in detail below

 krb5_renew_interval

 krb5_renewable_lifetime

 krb5_lifetime

 krb5_validate

 krb5_canonicalize

 krb5_auth_timeout

CONFIGURATION OPTIONS Page 3/6

 The KCM service is configured in the ?kcm? section of the sssd.conf

 file. Please note that because the KCM service is typically

 socket-activated, it is enough to just restart the ?sssd-kcm? service

 after changing options in the ?kcm? section of sssd.conf:

 systemctl restart sssd-kcm.service

 The KCM service is configured in the ?kcm? For a detailed syntax

 reference, refer to the ?FILE FORMAT? section of the sssd.conf(5)

 manual page.

 The generic SSSD service options such as ?debug_level? or ?fd_limit?

 are accepted by the kcm service. Please refer to the sssd.conf(5)

 manual page for a complete list. In addition, there are some

 KCM-specific options as well.

 socket_path (string)

 The socket the KCM service will listen on.

 Default: /var/run/.heim_org.h5l.kcm-socket

 Note: on platforms where systemd is supported, the socket path is

 overwritten by the one defined in the sssd-kcm.socket unit file.

 max_ccaches (integer)

 How many credential caches does the KCM database allow for all

 users.

 Default: 0 (unlimited, only the per-UID quota is enforced)

 max_uid_ccaches (integer)

 How many credential caches does the KCM database allow per UID.

 This is equivalent to ?with how many principals you can kinit?.

 Default: 64

 max_ccache_size (integer)

 How big can a credential cache be per ccache. Each service ticket

 accounts into this quota.

 Default: 65536

 tgt_renewal (bool)

 Enables TGT renewals functionality.

 Default: False (Automatic renewals disabled)

 tgt_renewal_inherit (string) Page 4/6

 Domain to inherit krb5_* options from, for use with TGT renewals.

 Default: NULL

 krb5_auth_timeout (integer)

 Timeout in seconds after an online authentication request or change

 password request is aborted. If possible, the authentication

 request is continued offline.

 Default: 6

 krb5_validate (boolean)

 Verify with the help of krb5_keytab that the TGT obtained has not

 been spoofed. The keytab is checked for entries sequentially, and

 the first entry with a matching realm is used for validation. If no

 entry matches the realm, the last entry in the keytab is used. This

 process can be used to validate environments using cross-realm

 trust by placing the appropriate keytab entry as the last entry or

 the only entry in the keytab file.

 Default: false (IPA and AD provider: true)

 Please note that the ticket validation is the first step when

 checking the PAC (see 'pac_check' in the sssd.conf(5) manual page

 for details). If ticket validation is disabled the PAC checks will

 be skipped as well.

 krb5_renewable_lifetime (string)

 Request a renewable ticket with a total lifetime, given as an

 integer immediately followed by a time unit:

 s for seconds

 m for minutes

 h for hours

 d for days.

 If there is no unit given, s is assumed.

 NOTE: It is not possible to mix units. To set the renewable

 lifetime to one and a half hours, use '90m' instead of '1h30m'.

 Default: not set, i.e. the TGT is not renewable

 krb5_lifetime (string)

 Request ticket with a lifetime, given as an integer immediately Page 5/6

 followed by a time unit:

 s for seconds

 m for minutes

 h for hours

 d for days.

 If there is no unit given s is assumed.

 NOTE: It is not possible to mix units. To set the lifetime to one

 and a half hours please use '90m' instead of '1h30m'.

 Default: not set, i.e. the default ticket lifetime configured on

 the KDC.

 krb5_renew_interval (string)

 The time in seconds between two checks if the TGT should be

 renewed. TGTs are renewed if about half of their lifetime is

 exceeded, given as an integer immediately followed by a time unit:

 s for seconds

 m for minutes

 h for hours

 d for days.

 If there is no unit given, s is assumed.

 NOTE: It is not possible to mix units. To set the renewable

 lifetime to one and a half hours, use '90m' instead of '1h30m'.

 If this option is not set or is 0 the automatic renewal is

 disabled.

 Default: not set

 krb5_canonicalize (boolean)

 Specifies if the host and user principal should be canonicalized.

 This feature is available with MIT Kerberos 1.7 and later versions.

 Default: false

SEE ALSO

 sssd(8), sssd.conf(5),

AUTHORS

 The SSSD upstream - https://github.com/SSSD/sssd/

SSSD 07/10/2023 SSSD-KCM(8) Page 6/6

