
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'strfromd.3' command

$ man strfromd.3

STRFROMD(3) Linux Programmer's Manual STRFROMD(3)

NAME

 strfromd, strfromf, strfroml - convert a floating-point value into a

 string

SYNOPSIS

 #include <stdlib.h>

 int strfromd(char *restrict str, size_t n,

 const char *restrict format, double fp);

 int strfromf(char *restrict str, size_t n,

 const char *restrict format, float fp);

 int strfroml(char *restrict str, size_t n,

 const char *restrict format, long double fp);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 strfromd(), strfromf(), strfroml():

 __STDC_WANT_IEC_60559_BFP_EXT__

DESCRIPTION

 These functions convert a floating-point value, fp, into a string of

 characters, str, with a configurable format string. At most n charac?

 ters are stored into str.

 The terminating null byte ('\0') is written if and only if n is suffi?

 ciently large, otherwise the written string is truncated at n charac?

 ters.

 The strfromd(), strfromf(), and strfroml() functions are equivalent to Page 1/4

 snprintf(str, n, format, fp);

 except for the format string.

 Format of the format string

 The format string must start with the character '%'. This is followed

 by an optional precision which starts with the period character (.),

 followed by an optional decimal integer. If no integer is specified

 after the period character, a precision of zero is used. Finally, the

 format string should have one of the conversion specifiers a, A, e, E,

 f, F, g, or G.

 The conversion specifier is applied based on the floating-point type

 indicated by the function suffix. Therefore, unlike snprintf(), the

 format string does not have a length modifier character. See

 snprintf(3) for a detailed description of these conversion specifiers.

 The implementation conforms to the C99 standard on conversion of NaN

 and infinity values:

 If fp is a NaN, +NaN, or -NaN, and f (or a, e, g) is the conver?

 sion specifier, the conversion is to "nan", "nan", or "-nan",

 respectively. If F (or A, E, G) is the conversion specifier,

 the conversion is to "NAN" or "-NAN".

 Likewise if fp is infinity, it is converted to [-]inf or [-]INF.

 A malformed format string results in undefined behavior.

RETURN VALUE

 The strfromd(), strfromf(), and strfroml() functions return the number

 of characters that would have been written in str if n had enough

 space, not counting the terminating null byte. Thus, a return value of

 n or greater means that the output was truncated.

VERSIONS

 The strfromd(), strfromf(), and strfroml() functions are available in

 glibc since version 2.25.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7)

 and the POSIX Safety Concepts section in GNU C Library manual.

 ?? Page 2/4

 ?Interface ? Attribute ? Value ?

 ??

 ? ? Thread safety ? MT-Safe locale ?

 ?strfromd(), ???

 ?strfromf(), ? Asynchronous signal safety ? AS-Unsafe heap ?

 ?strfroml() ???

 ? ? Asynchronous cancellation safety ? AC-Unsafe mem ?

 ??

 Note: these attributes are preliminary.

CONFORMING TO

 C99, ISO/IEC TS 18661-1.

NOTES

 The strfromd(), strfromf(), and strfroml() functions take account of

 the LC_NUMERIC category of the current locale.

EXAMPLES

 To convert the value 12.1 as a float type to a string using decimal no?

 tation, resulting in "12.100000":

 #define __STDC_WANT_IEC_60559_BFP_EXT__

 #include <stdlib.h>

 int ssize = 10;

 char s[ssize];

 strfromf(s, ssize, "%f", 12.1);

 To convert the value 12.3456 as a float type to a string using decimal

 notation with two digits of precision, resulting in "12.35":

 #define __STDC_WANT_IEC_60559_BFP_EXT__

 #include <stdlib.h>

 int ssize = 10;

 char s[ssize];

 strfromf(s, ssize, "%.2f", 12.3456);

 To convert the value 12.345e19 as a double type to a string using sci?

 entific notation with zero digits of precision, resulting in "1E+20":

 #define __STDC_WANT_IEC_60559_BFP_EXT__

 #include <stdlib.h> Page 3/4

 int ssize = 10;

 char s[ssize];

 strfromd(s, ssize, "%.E", 12.345e19);

SEE ALSO

 atof(3), snprintf(3), strtod(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2019-03-06 STRFROMD(3)

Page 4/4

