
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'strncat.3' command

$ man strncat.3

STRCAT(3) Linux Programmer's Manual STRCAT(3)

NAME

 strcat, strncat - concatenate two strings

SYNOPSIS

 #include <string.h>

 char *strcat(char *dest, const char *src);

 char *strncat(char *dest, const char *src, size_t n);

DESCRIPTION

 The strcat() function appends the src string to the dest string, over?

 writing the terminating null byte ('\0') at the end of dest, and then

 adds a terminating null byte. The strings may not overlap, and the

 dest string must have enough space for the result. If dest is not

 large enough, program behavior is unpredictable; buffer overruns are a

 favorite avenue for attacking secure programs.

 The strncat() function is similar, except that

 * it will use at most n bytes from src; and

 * src does not need to be null-terminated if it contains n or more

 bytes.

 As with strcat(), the resulting string in dest is always null-termi?

 nated.

 If src contains n or more bytes, strncat() writes n+1 bytes to dest (n

 from src plus the terminating null byte). Therefore, the size of dest

 must be at least strlen(dest)+n+1. Page 1/4

 A simple implementation of strncat() might be:

 char *

 strncat(char *dest, const char *src, size_t n)

 {

 size_t dest_len = strlen(dest);

 size_t i;

 for (i = 0 ; i < n && src[i] != '\0' ; i++)

 dest[dest_len + i] = src[i];

 dest[dest_len + i] = '\0';

 return dest;

 }

RETURN VALUE

 The strcat() and strncat() functions return a pointer to the resulting

 string dest.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?strcat(), strncat() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

NOTES

 Some systems (the BSDs, Solaris, and others) provide the following

 function:

 size_t strlcat(char *dest, const char *src, size_t size);

 This function appends the null-terminated string src to the string

 dest, copying at most size-strlen(dest)-1 from src, and adds a termi?

 nating null byte to the result, unless size is less than strlen(dest).

 This function fixes the buffer overrun problem of strcat(), but the

 caller must still handle the possibility of data loss if size is too Page 2/4

 small. The function returns the length of the string strlcat() tried

 to create; if the return value is greater than or equal to size, data

 loss occurred. If data loss matters, the caller must either check the

 arguments before the call, or test the function return value. strl?

 cat() is not present in glibc and is not standardized by POSIX, but is

 available on Linux via the libbsd library.

EXAMPLES

 Because strcat() and strncat() must find the null byte that terminates

 the string dest using a search that starts at the beginning of the

 string, the execution time of these functions scales according to the

 length of the string dest. This can be demonstrated by running the

 program below. (If the goal is to concatenate many strings to one tar?

 get, then manually copying the bytes from each source string while

 maintaining a pointer to the end of the target string will provide bet?

 ter performance.)

 Program source

 #include <stdint.h>

 #include <string.h>

 #include <time.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 #define LIM 4000000

 char p[LIM + 1]; /* +1 for terminating null byte */

 time_t base;

 base = time(NULL);

 p[0] = '\0';

 for (int j = 0; j < LIM; j++) {

 if ((j % 10000) == 0)

 printf("%d %jd\n", j, (intmax_t) (time(NULL) - base));

 strcat(p, "a");

 } Page 3/4

 }

SEE ALSO

 bcopy(3), memccpy(3), memcpy(3), strcpy(3), string(3), strncpy(3), wc?

 scat(3), wcsncat(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 STRCAT(3)

Page 4/4

