
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sync_file_range.2' command

$ man sync_file_range.2

SYNC_FILE_RANGE(2) Linux Programmer's Manual SYNC_FILE_RANGE(2)

NAME

 sync_file_range - sync a file segment with disk

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h>

 int sync_file_range(int fd, off64_t offset, off64_t nbytes,

 unsigned int flags);

DESCRIPTION

 sync_file_range() permits fine control when synchronizing the open file

 referred to by the file descriptor fd with disk.

 offset is the starting byte of the file range to be synchronized.

 nbytes specifies the length of the range to be synchronized, in bytes;

 if nbytes is zero, then all bytes from offset through to the end of

 file are synchronized. Synchronization is in units of the system page

 size: offset is rounded down to a page boundary; (offset+nbytes-1) is

 rounded up to a page boundary.

 The flags bit-mask argument can include any of the following values:

 SYNC_FILE_RANGE_WAIT_BEFORE

 Wait upon write-out of all pages in the specified range that

 have already been submitted to the device driver for write-out

 before performing any write.

 SYNC_FILE_RANGE_WRITE Page 1/4

 Initiate write-out of all dirty pages in the specified range

 which are not presently submitted write-out. Note that even

 this may block if you attempt to write more than request queue

 size.

 SYNC_FILE_RANGE_WAIT_AFTER

 Wait upon write-out of all pages in the range after performing

 any write.

 Specifying flags as 0 is permitted, as a no-op.

 Warning

 This system call is extremely dangerous and should not be used in por?

 table programs. None of these operations writes out the file's meta?

 data. Therefore, unless the application is strictly performing over?

 writes of already-instantiated disk blocks, there are no guarantees

 that the data will be available after a crash. There is no user inter?

 face to know if a write is purely an overwrite. On filesystems using

 copy-on-write semantics (e.g., btrfs) an overwrite of existing allo?

 cated blocks is impossible. When writing into preallocated space, many

 filesystems also require calls into the block allocator, which this

 system call does not sync out to disk. This system call does not flush

 disk write caches and thus does not provide any data integrity on sys?

 tems with volatile disk write caches.

 Some details

 SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect

 any I/O errors or ENOSPC conditions and will return these to the

 caller.

 Useful combinations of the flags bits are:

 SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE

 Ensures that all pages in the specified range which were dirty

 when sync_file_range() was called are placed under write-out.

 This is a start-write-for-data-integrity operation.

 SYNC_FILE_RANGE_WRITE

 Start write-out of all dirty pages in the specified range which

 are not presently under write-out. This is an asynchronous Page 2/4

 flush-to-disk operation. This is not suitable for data integ?

 rity operations.

 SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER)

 Wait for completion of write-out of all pages in the specified

 range. This can be used after an earlier

 SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE operation to

 wait for completion of that operation, and obtain its result.

 SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE |

 SYNC_FILE_RANGE_WAIT_AFTER

 This is a write-for-data-integrity operation that will ensure

 that all pages in the specified range which were dirty when

 sync_file_range() was called are committed to disk.

RETURN VALUE

 On success, sync_file_range() returns 0; on failure -1 is returned and

 errno is set to indicate the error.

ERRORS

 EBADF fd is not a valid file descriptor.

 EINVAL flags specifies an invalid bit; or offset or nbytes is invalid.

 EIO I/O error.

 ENOMEM Out of memory.

 ENOSPC Out of disk space.

 ESPIPE fd refers to something other than a regular file, a block de?

 vice, or a directory.

VERSIONS

 sync_file_range() appeared on Linux in kernel 2.6.17.

CONFORMING TO

 This system call is Linux-specific, and should be avoided in portable

 programs.

NOTES

 sync_file_range2()

 Some architectures (e.g., PowerPC, ARM) need 64-bit arguments to be

 aligned in a suitable pair of registers. On such architectures, the

 call signature of sync_file_range() shown in the SYNOPSIS would force a Page 3/4

 register to be wasted as padding between the fd and offset arguments.

 (See syscall(2) for details.) Therefore, these architectures define a

 different system call that orders the arguments suitably:

 int sync_file_range2(int fd, unsigned int flags,

 off64_t offset, off64_t nbytes);

 The behavior of this system call is otherwise exactly the same as

 sync_file_range().

 A system call with this signature first appeared on the ARM architec?

 ture in Linux 2.6.20, with the name arm_sync_file_range(). It was re?

 named in Linux 2.6.22, when the analogous system call was added for

 PowerPC. On architectures where glibc support is provided, glibc

 transparently wraps sync_file_range2() under the name

 sync_file_range().

SEE ALSO

 fdatasync(2), fsync(2), msync(2), sync(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SYNC_FILE_RANGE(2)

Page 4/4

