r“‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sync_file_range.2' command

$ man sync_file_range.2

SYNC_FILE_RANGE(2) Linux Programmer's Manual SYNC_FILE_RANGE(2)
NAME
sync_file_range - sync a file segment with disk
SYNOPSIS
#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <fcntl.h>
int sync_file_range(int fd, off64_t offset, off64_t nbytes,
unsigned int flags);
DESCRIPTION
sync_file_range() permits fine control when synchronizing the open file
referred to by the file descriptor fd with disk.
offset is the starting byte of the file range to be synchronized.
nbytes specifies the length of the range to be synchronized, in bytes;
if nbytes is zero, then all bytes from offset through to the end of
file are synchronized. Synchronization is in units of the system page
size: offset is rounded down to a page boundary; (offset+nbytes-1) is
rounded up to a page boundary.
The flags bit-mask argument can include any of the following values:
SYNC_FILE_RANGE_WAIT_BEFORE
Wait upon write-out of all pages in the specified range that
have already been submitted to the device driver for write-out
before performing any write.

SYNC_FILE_RANGE_WRITE Page 1/4



Initiate write-out of all dirty pages in the specified range

which are not presently submitted write-out. Note that even

this may block if you attempt to write more than request queue

size.
SYNC_FILE_RANGE_WAIT_AFTER

Wait upon write-out of all pages in the range after performing

any write.
Specifying flags as 0 is permitted, as a no-op.

Warning
This system call is extremely dangerous and should not be used in por?
table programs. None of these operations writes out the file's meta?
data. Therefore, unless the application is strictly performing over?
writes of already-instantiated disk blocks, there are no guarantees
that the data will be available after a crash. There is no user inter?
face to know if a write is purely an overwrite. On filesystems using
copy-on-write semantics (e.g., btrfs) an overwrite of existing allo?
cated blocks is impossible. When writing into preallocated space, many
filesystems also require calls into the block allocator, which this
system call does not sync out to disk. This system call does not flush
disk write caches and thus does not provide any data integrity on sys?
tems with volatile disk write caches.
Some details

SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect
any /O errors or ENOSPC conditions and will return these to the
caller.

Useful combinations of the flags bits are:
SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE
Ensures that all pages in the specified range which were dirty

when sync_file_range() was called are placed under write-out.

This is a start-write-for-data-integrity operation.
SYNC_FILE_RANGE_WRITE

Start write-out of all dirty pages in the specified range which

are not presently under write-out. This is an asynchronous Page 2/4



flush-to-disk operation. This is not suitable for data integ?

rity operations.

SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER)

Wait for completion of write-out of all pages in the specified

range. This can be wused after an earlier

SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE operation to

wait for completion of that operation, and obtain its result.

SYNC_FILE_RANGE_WAIT BEFORE | SYNC_FILE_RANGE_WRITE

SYNC_FILE_RANGE_WAIT_AFTER
This is a write-for-data-integrity operation that will ensure
that all pages in the specified range which were dirty when
sync_file_range() was called are committed to disk.
RETURN VALUE
On success, sync_file_range() returns 0; on failure -1 is returned and
errno is set to indicate the error.
ERRORS
EBADF fd is not a valid file descriptor.
EINVAL flags specifies an invalid bit; or offset or nbytes is invalid.
EIO 1/O error.
ENOMEM Out of memory.
ENOSPC Out of disk space.
ESPIPE fd refers to something other than a regular file, a block de?
vice, or a directory.
VERSIONS
sync_file_range() appeared on Linux in kernel 2.6.17.
CONFORMING TO
This system call is Linux-specific, and should be avoided in portable
programs.
NOTES
sync_file_range2()
Some architectures (e.g., PowerPC, ARM) need 64-bit arguments to be
aligned in a suitable pair of registers. On such architectures, the

call signature of sync_file_range() shown in the SYNOPSIS would force a

Page 3/4



register to be wasted as padding between the fd and offset arguments.
(See syscall(2) for details.) Therefore, these architectures define a
different system call that orders the arguments suitably:
int sync_file_range2(int fd, unsigned int flags,
off64_t offset, off64_t nbytes);
The behavior of this system call is otherwise exactly the same as
sync_file_range().
A system call with this signature first appeared on the ARM architec?
ture in Linux 2.6.20, with the name arm_sync_file_range(). It was re?
named in Linux 2.6.22, when the analogous system call was added for
PowerPC. On architectures where glibc support is provided, glibc
transparently wraps sync_file_range2() under the name
sync_file_range().
SEE ALSO
fdatasync(2), fsync(2), msync(2), sync(2)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

Linux 2017-09-15 SYNC_FILE_RANGE(2)

Page 4/4



