
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sysctl.2' command

$ man sysctl.2

SYSCTL(2) Linux Programmer's Manual SYSCTL(2)

NAME

 sysctl - read/write system parameters

SYNOPSIS

 #include <unistd.h>

 #include <linux/sysctl.h>

 int _sysctl(struct __sysctl_args *args);

DESCRIPTION

 This system call no longer exists on current kernels! See NOTES.

 The _sysctl() call reads and/or writes kernel parameters. For example,

 the hostname, or the maximum number of open files. The argument has

 the form

 struct __sysctl_args {

 int *name; /* integer vector describing variable */

 int nlen; /* length of this vector */

 void *oldval; /* 0 or address where to store old value */

 size_t *oldlenp; /* available room for old value,

 overwritten by actual size of old value */

 void *newval; /* 0 or address of new value */

 size_t newlen; /* size of new value */

 };

 This call does a search in a tree structure, possibly resembling a di?

 rectory tree under /proc/sys, and if the requested item is found calls Page 1/4

 some appropriate routine to read or modify the value.

RETURN VALUE

 Upon successful completion, _sysctl() returns 0. Otherwise, a value of

 -1 is returned and errno is set to indicate the error.

ERRORS

 EACCES, EPERM

 No search permission for one of the encountered "directories",

 or no read permission where oldval was nonzero, or no write per?

 mission where newval was nonzero.

 EFAULT The invocation asked for the previous value by setting oldval

 non-NULL, but allowed zero room in oldlenp.

 ENOTDIR

 name was not found.

VERSIONS

 This system call first appeared in Linux 1.3.57. It was removed in

 Linux 5.5; glibc support was removed in version 2.32.

CONFORMING TO

 This call is Linux-specific, and should not be used in programs in?

 tended to be portable. It originated in 4.4BSD. Only Linux has the

 /proc/sys mirror, and the object naming schemes differ between Linux

 and 4.4BSD, but the declaration of the sysctl() function is the same in

 both.

NOTES

 Use of this system call was long discouraged: since Linux 2.6.24, uses

 of this system call result in warnings in the kernel log, and in Linux

 5.5, the system call was finally removed. Use the /proc/sys interface

 instead.

 Note that on older kernels where this system call still exists, it is

 available only if the kernel was configured with the CON?

 FIG_SYSCTL_SYSCALL option. Furthermore, glibc does not provide a wrap?

 per for this system call, necessitating the use of syscall(2).

BUGS

 The object names vary between kernel versions, making this system call Page 2/4

 worthless for applications.

 Not all available objects are properly documented.

 It is not yet possible to change operating system by writing to

 /proc/sys/kernel/ostype.

EXAMPLES

 #define _GNU_SOURCE

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <string.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <linux/sysctl.h>

 int _sysctl(struct __sysctl_args *args);

 #define OSNAMESZ 100

 int

 main(void)

 {

 struct __sysctl_args args;

 char osname[OSNAMESZ];

 size_t osnamelth;

 int name[] = { CTL_KERN, KERN_OSTYPE };

 memset(&args, 0, sizeof(args));

 args.name = name;

 args.nlen = sizeof(name)/sizeof(name[0]);

 args.oldval = osname;

 args.oldlenp = &osnamelth;

 osnamelth = sizeof(osname);

 if (syscall(SYS__sysctl, &args) == -1) {

 perror("_sysctl");

 exit(EXIT_FAILURE);

 }

 printf("This machine is running %*s\n", osnamelth, osname);

 exit(EXIT_SUCCESS); Page 3/4

 }

SEE ALSO

 proc(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SYSCTL(2)

Page 4/4

