
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd-notify.1' command

$ man systemd-notify.1

SYSTEMD-NOTIFY(1) systemd-notify SYSTEMD-NOTIFY(1)

NAME

 systemd-notify - Notify service manager about start-up completion and

 other daemon status changes

SYNOPSIS

 systemd-notify [OPTIONS...] [VARIABLE=VALUE...]

DESCRIPTION

 systemd-notify may be called by daemon scripts to notify the init

 system about status changes. It can be used to send arbitrary

 information, encoded in an environment-block-like list of strings. Most

 importantly, it can be used for start-up completion notification.

 This is mostly just a wrapper around sd_notify() and makes this

 functionality available to shell scripts. For details see sd_notify(3).

 The command line may carry a list of environment variables to send as

 part of the status update.

 Note that systemd will refuse reception of status updates from this

 command unless NotifyAccess= is set for the service unit this command

 is called from.

 Note that sd_notify() notifications may be attributed to units

 correctly only if either the sending process is still around at the

 time PID 1 processes the message, or if the sending process is

 explicitly runtime-tracked by the service manager. The latter is the

 case if the service manager originally forked off the process, i.e. on Page 1/4

 all processes that match NotifyAccess=main or NotifyAccess=exec.

 Conversely, if an auxiliary process of the unit sends an sd_notify()

 message and immediately exits, the service manager might not be able to

 properly attribute the message to the unit, and thus will ignore it,

 even if NotifyAccess=all is set for it. When --no-block is used, all

 synchronization for reception of notifications is disabled, and hence

 the aforementioned race may occur if the invoking process is not the

 service manager or spawned by the service manager.

 Hence, systemd-notify will first attempt to invoke sd_notify()

 pretending to have the PID of the invoking process. This will only

 succeed when invoked with sufficient privileges. On failure, it will

 then fall back to invoking it under its own PID. This behaviour is

 useful in order that when the tool is invoked from a shell script the

 shell process ? and not the systemd-notify process ? appears as sender

 of the message, which in turn is helpful if the shell process is the

 main process of a service, due to the limitations of NotifyAccess=all.

 Use the --pid= switch to tweak this behaviour.

OPTIONS

 The following options are understood:

 --ready

 Inform the init system about service start-up completion. This is

 equivalent to systemd-notify READY=1. For details about the

 semantics of this option see sd_notify(3).

 --pid=

 Inform the service manager about the main PID of the daemon. Takes

 a PID as argument. If the argument is specified as "auto" or

 omitted, the PID of the process that invoked systemd-notify is

 used, except if that's the service manager. If the argument is

 specified as "self", the PID of the systemd-notify command itself

 is used, and if "parent" is specified the calling process' PID is

 used ? even if it is the service manager. This is equivalent to

 systemd-notify MAINPID=$PID. For details about the semantics of

 this option see sd_notify(3). Page 2/4

 --uid=USER

 Set the user ID to send the notification from. Takes a UNIX user

 name or numeric UID. When specified the notification message will

 be sent with the specified UID as sender, in place of the user the

 command was invoked as. This option requires sufficient privileges

 in order to be able manipulate the user identity of the process.

 --status=

 Send a free-form status string for the daemon to the init systemd.

 This option takes the status string as argument. This is equivalent

 to systemd-notify STATUS=.... For details about the semantics of

 this option see sd_notify(3).

 --booted

 Returns 0 if the system was booted up with systemd, non-zero

 otherwise. If this option is passed, no message is sent. This

 option is hence unrelated to the other options. For details about

 the semantics of this option, see sd_booted(3). An alternate way to

 check for this state is to call systemctl(1) with the

 is-system-running command. It will return "offline" if the system

 was not booted with systemd.

 --no-block

 Do not synchronously wait for the requested operation to finish.

 Use of this option is only recommended when systemd-notify is

 spawned by the service manager, or when the invoking process is

 directly spawned by the service manager and has enough privileges

 to allow systemd-notify to send the notification on its behalf.

 Sending notifications with this option set is prone to race

 conditions in all other cases.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

EXIT STATUS

 On success, 0 is returned, a non-zero failure code otherwise. Page 3/4

EXAMPLE

 Example 1. Start-up Notification and Status Updates

 A simple shell daemon that sends start-up notifications after having

 set up its communication channel. During runtime it sends further

 status updates to the init system:

 #!/bin/sh

 mkfifo /tmp/waldo

 systemd-notify --ready --status="Waiting for data..."

 while : ; do

 read -r a < /tmp/waldo

 systemd-notify --status="Processing $a"

 # Do something with $a ...

 systemd-notify --status="Waiting for data..."

 done

SEE ALSO

 systemd(1), systemctl(1), systemd.unit(5), sd_notify(3), sd_booted(3)

systemd 252 SYSTEMD-NOTIFY(1)

Page 4/4

