
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd-sysext.8' command

$ man systemd-sysext.8

SYSTEMD-SYSEXT(8) systemd-sysext SYSTEMD-SYSEXT(8)

NAME

 systemd-sysext, systemd-sysext.service - Activates System Extension

 Images

SYNOPSIS

 systemd-sysext [OPTIONS...] COMMAND

 systemd-sysext.service

DESCRIPTION

 systemd-sysext activates/deactivates system extension images. System

 extension images may ? dynamically at runtime ? extend the /usr/ and

 /opt/ directory hierarchies with additional files. This is particularly

 useful on immutable system images where a /usr/ and/or /opt/ hierarchy

 residing on a read-only file system shall be extended temporarily at

 runtime without making any persistent modifications.

 System extension images should contain files and directories similar in

 fashion to regular operating system tree. When one or more system

 extension images are activated, their /usr/ and /opt/ hierarchies are

 combined via "overlayfs" with the same hierarchies of the host OS, and

 the host /usr/ and /opt/ overmounted with it ("merging"). When they are

 deactivated, the mount point is disassembled ? again revealing the

 unmodified original host version of the hierarchy ("unmerging").

 Merging thus makes the extension's resources suddenly appear below the

 /usr/ and /opt/ hierarchies as if they were included in the base OS Page 1/6

 image itself. Unmerging makes them disappear again, leaving in place

 only the files that were shipped with the base OS image itself.

 Files and directories contained in the extension images outside of the

 /usr/ and /opt/ hierarchies are not merged, and hence have no effect

 when included in a system extension image. In particular, files in the

 /etc/ and /var/ included in a system extension image will not appear in

 the respective hierarchies after activation.

 System extension images are strictly read-only, and the host /usr/ and

 /opt/ hierarchies become read-only too while they are activated.

 System extensions are supposed to be purely additive, i.e. they are

 supposed to include only files that do not exist in the underlying

 basic OS image. However, the underlying mechanism (overlayfs) also

 allows overlaying or removing files, but it is recommended not to make

 use of this.

 System extension images may be provided in the following formats:

 1. Plain directories or btrfs subvolumes containing the OS tree

 2. Disk images with a GPT disk label, following the Discoverable

 Partitions Specification[1]

 3. Disk images lacking a partition table, with a naked Linux file

 system (e.g. squashfs or ext4)

 These image formats are the same ones that systemd-nspawn(1) supports

 via its --directory=/--image= switches and those that the service

 manager supports via RootDirectory=/RootImage=. Similar to them they

 may optionally carry Verity authentication information.

 System extensions are automatically looked for in the directories

 /etc/extensions/, /run/extensions/, /var/lib/extensions/,

 /usr/lib/extensions/ and /usr/local/lib/extensions/. The first two

 listed directories are not suitable for carrying large binary images,

 however are still useful for carrying symlinks to them. The primary

 place for installing system extensions is /var/lib/extensions/. Any

 directories found in these search directories are considered directory

 based extension images, any files with the .raw suffix are considered

 disk image based extension images. Page 2/6

 During boot OS extension images are activated automatically, if the

 systemd-sysext.service is enabled. Note that this service runs only

 after the underlying file systems where system extensions may be

 located have been mounted. This means they are not suitable for

 shipping resources that are processed by subsystems running in earliest

 boot. Specifically, OS extension images are not suitable for shipping

 system services or systemd-sysusers(8) definitions. See Portable

 Services[2] for a simple mechanism for shipping system services in disk

 images, in a similar fashion to OS extensions. Note the different

 isolation on these two mechanisms: while system extension directly

 extend the underlying OS image with additional files that appear in a

 way very similar to as if they were shipped in the OS image itself and

 thus imply no security isolation, portable services imply service level

 sandboxing in one way or another. The systemd-sysext.service service is

 guaranteed to finish start-up before basic.target is reached; i.e. at

 the time regular services initialize (those which do not use

 DefaultDependencies=no), the files and directories system extensions

 provide are available in /usr/ and /opt/ and may be accessed.

 Note that there is no concept of enabling/disabling installed system

 extension images: all installed extension images are automatically

 activated at boot. However, you can place an empty directory named like

 the extension (no .raw) in /etc/extensions/ to "mask" an extension with

 the same name in a system folder with lower precedence.

 A simple mechanism for version compatibility is enforced: a system

 extension image must carry a

 /usr/lib/extension-release.d/extension-release.$name file, which must

 match its image name, that is compared with the host os-release file:

 the contained ID= fields have to match unless "_any" is set for the

 extension. If the extension ID= is not "_any", the SYSEXT_LEVEL= field

 (if defined) has to match. If the latter is not defined, the

 VERSION_ID= field has to match instead. If the extension defines the

 ARCHITECTURE= field and the value is not "_any" it has to match the

 kernel's architecture reported by uname(2) but the used architecture Page 3/6

 identifiers are the same as for ConditionArchitecture= described in

 systemd.unit(5). System extensions should not ship a

 /usr/lib/os-release file (as that would be merged into the host /usr/

 tree, overriding the host OS version data, which is not desirable). The

 extension-release file follows the same format and semantics, and

 carries the same content, as the os-release file of the OS, but it

 describes the resources carried in the extension image.

USES

 The primary use case for system images are immutable environments where

 debugging and development tools shall optionally be made available, but

 not included in the immutable base OS image itself (e.g. strace(1) and

 gdb(1) shall be an optionally installable addition in order to make

 debugging/development easier). System extension images should not be

 misunderstood as a generic software packaging framework, as no

 dependency scheme is available: system extensions should carry all

 files they need themselves, except for those already shipped in the

 underlying host system image. Typically, system extension images are

 built at the same time as the base OS image ? within the same build

 system.

 Another use case for the system extension concept is temporarily

 overriding OS supplied resources with newer ones, for example to

 install a locally compiled development version of some low-level

 component over the immutable OS image without doing a full OS rebuild

 or modifying the nominally immutable image. (e.g. "install" a locally

 built package with DESTDIR=/var/lib/extensions/mytest make install &&

 systemd-sysext refresh, making it available in /usr/ as if it was

 installed in the OS image itself.) This case works regardless if the

 underlying host /usr/ is managed as immutable disk image or is a

 traditional package manager controlled (i.e. writable) tree.

COMMANDS

 The following commands are understood:

 status

 When invoked without any command verb, or when status is specified Page 4/6

 the current merge status is shown, separately for both /usr/ and

 /opt/.

 merge

 Merges all currently installed system extension images into /usr/

 and /opt/, by overmounting these hierarchies with an "overlayfs"

 file system combining the underlying hierarchies with those

 included in the extension images. This command will fail if the

 hierarchies are already merged.

 unmerge

 Unmerges all currently installed system extension images from /usr/

 and /opt/, by unmounting the "overlayfs" file systems created by

 merge prior.

 refresh

 A combination of unmerge and merge: if already mounted the existing

 "overlayfs" instance is unmounted temporarily, and then replaced by

 a new version. This command is useful after installing/removing

 system extension images, in order to update the "overlayfs" file

 system accordingly. If no system extensions are installed when this

 command is executed, the equivalent of unmerge is executed, without

 establishing any new "overlayfs" instance. Note that currently

 there's a brief moment where neither the old nor the new

 "overlayfs" file system is mounted. This implies that all resources

 supplied by a system extension will briefly disappear ? even if it

 exists continuously during the refresh operation.

 list

 A brief list of installed extension images is shown.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

OPTIONS

 --root=

 Operate relative to the specified root directory, i.e. establish Page 5/6

 the "overlayfs" mount not on the top-level host /usr/ and /opt/

 hierarchies, but below some specified root directory.

 --force

 When merging system extensions into /usr/ and /opt/, ignore version

 incompatibilities, i.e. force merging regardless of whether the

 version information included in the extension images matches the

 host or not.

 --no-pager

 Do not pipe output into a pager.

 --no-legend

 Do not print the legend, i.e. column headers and the footer with

 hints.

 --json=MODE

 Shows output formatted as JSON. Expects one of "short" (for the

 shortest possible output without any redundant whitespace or line

 breaks), "pretty" (for a pretty version of the same, with

 indentation and line breaks) or "off" (to turn off JSON output, the

 default).

EXIT STATUS

 On success, 0 is returned.

SEE ALSO

 systemd(1), systemd-nspawn(1)

NOTES

 1. Discoverable Partitions Specification

 https://systemd.io/DISCOVERABLE_PARTITIONS

 2. Portable Services

 https://systemd.io/PORTABLE_SERVICES

systemd 252 SYSTEMD-SYSEXT(8)

Page 6/6

