
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd.timer.5' command

$ man systemd.timer.5

SYSTEMD.TIMER(5) systemd.timer SYSTEMD.TIMER(5)

NAME

 systemd.timer - Timer unit configuration

SYNOPSIS

 timer.timer

DESCRIPTION

 A unit configuration file whose name ends in ".timer" encodes

 information about a timer controlled and supervised by systemd, for

 timer-based activation.

 This man page lists the configuration options specific to this unit

 type. See systemd.unit(5) for the common options of all unit

 configuration files. The common configuration items are configured in

 the generic [Unit] and [Install] sections. The timer specific

 configuration options are configured in the [Timer] section.

 For each timer file, a matching unit file must exist, describing the

 unit to activate when the timer elapses. By default, a service by the

 same name as the timer (except for the suffix) is activated. Example: a

 timer file foo.timer activates a matching service foo.service. The unit

 to activate may be controlled by Unit= (see below).

 Note that in case the unit to activate is already active at the time

 the timer elapses it is not restarted, but simply left running. There

 is no concept of spawning new service instances in this case. Due to

 this, services with RemainAfterExit= set (which stay around Page 1/9

 continuously even after the service's main process exited) are usually

 not suitable for activation via repetitive timers, as they will only be

 activated once, and then stay around forever.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 The following dependencies are implicitly added:

 ? Timer units automatically gain a Before= dependency on the service

 they are supposed to activate.

 Default Dependencies

 The following dependencies are added unless DefaultDependencies=no is

 set:

 ? Timer units will automatically have dependencies of type Requires=

 and After= on sysinit.target, a dependency of type Before= on

 timers.target, as well as Conflicts= and Before= on shutdown.target

 to ensure that they are stopped cleanly prior to system shutdown.

 Only timer units involved with early boot or late system shutdown

 should disable the DefaultDependencies= option.

 ? Timer units with at least one OnCalendar= directive acquire a pair

 of additional After= dependencies on time-set.target and

 time-sync.target, in order to avoid being started before the system

 clock has been correctly set. See systemd.special(7) for details on

 these two targets.

OPTIONS

 Timer unit files may include [Unit] and [Install] sections, which are

 described in systemd.unit(5).

 Timer unit files must include a [Timer] section, which carries

 information about the timer it defines. The options specific to the

 [Timer] section of timer units are the following:

 OnActiveSec=, OnBootSec=, OnStartupSec=, OnUnitActiveSec=,

 OnUnitInactiveSec=

 Defines monotonic timers relative to different starting points:

 Table 1. Settings and their starting points

 ?? Page 2/9

 ?Setting ? Meaning ?

 ??

 ?OnActiveSec= ? Defines a timer relative ?

 ? ? to the moment the timer ?

 ? ? unit itself is activated. ?

 ??

 ?OnBootSec= ? Defines a timer relative ?

 ? ? to when the machine was ?

 ? ? booted up. In containers, ?

 ? ? for the system manager ?

 ? ? instance, this is mapped ?

 ? ? to OnStartupSec=, making ?

 ? ? both equivalent. ?

 ??

 ?OnStartupSec= ? Defines a timer relative ?

 ? ? to when the service ?

 ? ? manager was first started. ?

 ? ? For system timer units ?

 ? ? this is very similar to ?

 ? ? OnBootSec= as the system ?

 ? ? service manager is ?

 ? ? generally started very ?

 ? ? early at boot. It's ?

 ? ? primarily useful when ?

 ? ? configured in units ?

 ? ? running in the per-user ?

 ? ? service manager, as the ?

 ? ? user service manager is ?

 ? ? generally started on first ?

 ? ? login only, not already ?

 ? ? during boot. ?

 ??

 ?OnUnitActiveSec= ? Defines a timer relative ? Page 3/9

 ? ? to when the unit the timer ?

 ? ? unit is activating was ?

 ? ? last activated. ?

 ??

 ?OnUnitInactiveSec= ? Defines a timer relative ?

 ? ? to when the unit the timer ?

 ? ? unit is activating was ?

 ? ? last deactivated. ?

 ??

 Multiple directives may be combined of the same and of different

 types, in which case the timer unit will trigger whenever any of

 the specified timer expressions elapse. For example, by combining

 OnBootSec= and OnUnitActiveSec=, it is possible to define a timer

 that elapses in regular intervals and activates a specific service

 each time. Moreover, both monotonic time expressions and

 OnCalendar= calendar expressions may be combined in the same timer

 unit.

 The arguments to the directives are time spans configured in

 seconds. Example: "OnBootSec=50" means 50s after boot-up. The

 argument may also include time units. Example: "OnBootSec=5h 30min"

 means 5 hours and 30 minutes after boot-up. For details about the

 syntax of time spans, see systemd.time(7).

 If a timer configured with OnBootSec= or OnStartupSec= is already

 in the past when the timer unit is activated, it will immediately

 elapse and the configured unit is started. This is not the case for

 timers defined in the other directives.

 These are monotonic timers, independent of wall-clock time and

 timezones. If the computer is temporarily suspended, the monotonic

 clock generally pauses, too. Note that if WakeSystem= is used, a

 different monotonic clock is selected that continues to advance

 while the system is suspended and thus can be used as the trigger

 to resume the system.

 If the empty string is assigned to any of these options, the list Page 4/9

 of timers is reset (both monotonic timers and OnCalendar= timers,

 see below), and all prior assignments will have no effect.

 Note that timers do not necessarily expire at the precise time

 configured with these settings, as they are subject to the

 AccuracySec= setting below.

 OnCalendar=

 Defines realtime (i.e. wallclock) timers with calendar event

 expressions. See systemd.time(7) for more information on the syntax

 of calendar event expressions. Otherwise, the semantics are similar

 to OnActiveSec= and related settings.

 Note that timers do not necessarily expire at the precise time

 configured with this setting, as it is subject to the AccuracySec=

 setting below.

 May be specified more than once, in which case the timer unit will

 trigger whenever any of the specified expressions elapse. Moreover

 calendar timers and monotonic timers (see above) may be combined

 within the same timer unit.

 If the empty string is assigned to any of these options, the list

 of timers is reset (both OnCalendar= timers and monotonic timers,

 see above), and all prior assignments will have no effect.

 AccuracySec=

 Specify the accuracy the timer shall elapse with. Defaults to 1min.

 The timer is scheduled to elapse within a time window starting with

 the time specified in OnCalendar=, OnActiveSec=, OnBootSec=,

 OnStartupSec=, OnUnitActiveSec= or OnUnitInactiveSec= and ending

 the time configured with AccuracySec= later. Within this time

 window, the expiry time will be placed at a host-specific,

 randomized, but stable position that is synchronized between all

 local timer units. This is done in order to optimize power

 consumption to suppress unnecessary CPU wake-ups. To get best

 accuracy, set this option to 1us. Note that the timer is still

 subject to the timer slack configured via systemd-system.conf(5)'s

 TimerSlackNSec= setting. See prctl(2) for details. To optimize Page 5/9

 power consumption, make sure to set this value as high as possible

 and as low as necessary.

 Note that this setting is primarily a power saving option that

 allows coalescing CPU wake-ups. It should not be confused with

 RandomizedDelaySec= (see below) which adds a random value to the

 time the timer shall elapse next and whose purpose is the opposite:

 to stretch elapsing of timer events over a longer period to reduce

 workload spikes. For further details and explanations and how both

 settings play together, see below.

 RandomizedDelaySec=

 Delay the timer by a randomly selected, evenly distributed amount

 of time between 0 and the specified time value. Defaults to 0,

 indicating that no randomized delay shall be applied. Each timer

 unit will determine this delay randomly before each iteration, and

 the delay will simply be added on top of the next determined

 elapsing time, unless modified with FixedRandomDelay=, see below.

 This setting is useful to stretch dispatching of similarly

 configured timer events over a certain time interval, to prevent

 them from firing all at the same time, possibly resulting in

 resource congestion.

 Note the relation to AccuracySec= above: the latter allows the

 service manager to coalesce timer events within a specified time

 range in order to minimize wakeups, while this setting does the

 opposite: it stretches timer events over an interval, to make it

 unlikely that they fire simultaneously. If RandomizedDelaySec= and

 AccuracySec= are used in conjunction, first the randomized delay is

 added, and then the result is possibly further shifted to coalesce

 it with other timer events happening on the system. As mentioned

 above AccuracySec= defaults to 1 minute and RandomizedDelaySec= to

 0, thus encouraging coalescing of timer events. In order to

 optimally stretch timer events over a certain range of time, set

 AccuracySec=1us and RandomizedDelaySec= to some higher value.

 FixedRandomDelay= Page 6/9

 Takes a boolean argument. When enabled, the randomized offset

 specified by RandomizedDelaySec= is reused for all firings of the

 same timer. For a given timer unit, the offset depends on the

 machine ID, user identifier and timer name, which means that it is

 stable between restarts of the manager. This effectively creates a

 fixed offset for an individual timer, reducing the jitter in

 firings of this timer, while still avoiding firing at the same time

 as other similarly configured timers.

 This setting has no effect if RandomizedDelaySec= is set to 0.

 Defaults to false.

 OnClockChange=, OnTimezoneChange=

 These options take boolean arguments. When true, the service unit

 will be triggered when the system clock (CLOCK_REALTIME) jumps

 relative to the monotonic clock (CLOCK_MONOTONIC), or when the

 local system timezone is modified. These options can be used alone

 or in combination with other timer expressions (see above) within

 the same timer unit. These options default to false.

 Unit=

 The unit to activate when this timer elapses. The argument is a

 unit name, whose suffix is not ".timer". If not specified, this

 value defaults to a service that has the same name as the timer

 unit, except for the suffix. (See above.) It is recommended that

 the unit name that is activated and the unit name of the timer unit

 are named identically, except for the suffix.

 Persistent=

 Takes a boolean argument. If true, the time when the service unit

 was last triggered is stored on disk. When the timer is activated,

 the service unit is triggered immediately if it would have been

 triggered at least once during the time when the timer was

 inactive. Such triggering is nonetheless subject to the delay

 imposed by RandomizedDelaySec=. This is useful to catch up on

 missed runs of the service when the system was powered down. Note

 that this setting only has an effect on timers configured with Page 7/9

 OnCalendar=. Defaults to false.

 Use systemctl clean --what=state ... on the timer unit to remove

 the timestamp file maintained by this option from disk. In

 particular, use this command before uninstalling a timer unit. See

 systemctl(1) for details.

 WakeSystem=

 Takes a boolean argument. If true, an elapsing timer will cause the

 system to resume from suspend, should it be suspended and if the

 system supports this. Note that this option will only make sure the

 system resumes on the appropriate times, it will not take care of

 suspending it again after any work that is to be done is finished.

 Defaults to false.

 Note that this functionality requires privileges and is thus

 generally only available in the system service manager.

 Note that behaviour of monotonic clock timers (as configured with

 OnActiveSec=, OnBootSec=, OnStartupSec=, OnUnitActiveSec=,

 OnUnitInactiveSec=, see above) is altered depending on this option.

 If false, a monotonic clock is used that is paused during system

 suspend (CLOCK_MONOTONIC), if true a different monotonic clock is

 used that continues advancing during system suspend

 (CLOCK_BOOTTIME), see clock_getres(2) for details.

 RemainAfterElapse=

 Takes a boolean argument. If true, a timer will stay loaded, and

 its state remains queryable even after it elapsed and the

 associated unit (as configured with Unit=, see above) deactivated

 again. If false, an elapsed timer unit that cannot elapse anymore

 is unloaded once its associated unit deactivated again. Turning

 this off is particularly useful for transient timer units. Note

 that this setting has an effect when repeatedly starting a timer

 unit: if RemainAfterElapse= is on, starting the timer a second time

 has no effect. However, if RemainAfterElapse= is off and the timer

 unit was already unloaded, it can be started again, and thus the

 service can be triggered multiple times. Defaults to true. Page 8/9

 Check systemd.unit(5), systemd.exec(5), and systemd.kill(5) for more

 settings.

SEE ALSO

 Environment variables with details on the trigger will be set for

 triggered units. See the "Environment Variables Set on Triggered Units"

 section in systemd.exec(1) for more details.

 systemd(1), systemctl(1), systemd.unit(5), systemd.service(5),

 systemd.time(7), systemd.directives(7), systemd-system.conf(5),

 prctl(2)

systemd 252 SYSTEMD.TIMER(5)

Page 9/9

