r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tar.5' command
$ man tar.5
TAR(5) BSD File Formats Manual TAR(5)
NAME
tar ? format of tape archive files
DESCRIPTION
The tar archive format collects any number of files, directories, and
other file system objects (symbolic links, device nodes, etc.) into a
single stream of bytes. The format was originally designed to be used
with tape drives that operate with fixed-size blocks, but is widely used
as a general packaging mechanism.
General Format
A tar archive consists of a series of 512-byte records. Each file system
object requires a header record which stores basic metadata (pathname,
owner, permissions, etc.) and zero or more records containing any file
data. The end of the archive is indicated by two records consisting en?
tirely of zero bytes.
For compatibility with tape drives that use fixed block sizes, programs
that read or write tar files always read or write a fixed number of
records with each 1/0O operation. These ?blocks? are always a multiple of
the record size. The maximum block size supported by early implementa?
tions was 10240 bytes or 20 records. This is still the default for most
implementations although block sizes of 1MiB (2048 records) or larger are
commonly used with modern high-speed tape drives. (Note: the terms

?block? and ?record? here are not entirely standard; this document fol?

Page 1/19

lows the convention established by John Gilmore in documenting pdtar.)
Old-Style Archive Format
The original tar archive format has been extended many times to include
additional information that various implementors found necessary. This
section describes the variant implemented by the tar command included in
Version 7 AT&T UNIX, which seems to be the earliest widely-used version
of the tar program.
The header record for an old-style tar archive consists of the following:
struct header_old_tar {
char name[100];
char mode|[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char checksum[8];
char linkflag[1];
char linkname[100];
char pad[255];
h
All unused bytes in the header record are filled with nulls.
name Pathname, stored as a null-terminated string. Early tar imple?
mentations only stored regular files (including hardlinks to
those files). One common early convention used a trailing "/"
character to indicate a directory name, allowing directory per?
missions and owner information to be archived and restored.
mode File mode, stored as an octal number in ASCII.
uid, gid
User id and group id of owner, as octal numbers in ASCII.
size Size of file, as octal number in ASCII. For regular files only,
this indicates the amount of data that follows the header. In
particular, this field was ignored by early tar implementations

when extracting hardlinks. Modern writers should always store a Page 2/19

zero length for hardlink entries.
mtime Modification time of file, as an octal number in ASCII. This in?
dicates the number of seconds since the start of the epoch,
00:00:00 UTC January 1, 1970. Note that negative values should
be avoided here, as they are handled inconsistently.
checksum
Header checksum, stored as an octal number in ASCII. To compute
the checksum, set the checksum field to all spaces, then sum all
bytes in the header using unsigned arithmetic. This field should
be stored as six octal digits followed by a null and a space
character. Note that many early implementations of tar used
signed arithmetic for the checksum field, which can cause inter?
operability problems when transferring archives between systems.
Modern robust readers compute the checksum both ways and accept
the header if either computation matches.
linkflag, linkname
In order to preserve hardlinks and conserve tape, a file with
multiple links is only written to the archive the first time it
is encountered. The next time it is encountered, the linkflag is
set to an ASCII ?1? and the linkname field holds the first name
under which this file appears. (Note that regular files have a
null value in the linkflag field.)
Early tar implementations varied in how they terminated these fields.
The tar command in Version 7 AT&T UNIX used the following conventions
(this is also documented in early BSD manpages): the pathname must be
null-terminated; the mode, uid, and gid fields must end in a space and a
null byte; the size and mtime fields must end in a space; the checksum is
terminated by a null and a space. Early implementations filled the nu?
meric fields with leading spaces. This seems to have been common prac?
tice until the IEEE Std 1003.1-1988 (?POSIX.1?) standard was released.
For best portability, modern implementations should fill the numeric
fields with leading zeros.

Pre-POSIX Archives

Page 3/19

An early draft of IEEE Std 1003.1-1988 (?POSIX.1?) served as the basis
for John Gilmore's pdtar program and many system implementations from the
late 1980s and early 1990s. These archives generally follow the POSIX
ustar format described below with the following variations:

? The magic value consists of the five characters ?ustar? followed
by a space. The version field contains a space character fol?
lowed by a null.

? The numeric fields are generally filled with leading spaces (not
leading zeros as recommended in the final standard).

? The prefix field is often not used, limiting pathnames to the 100
characters of old-style archives.

POSIX ustar Archives

IEEE Std 1003.1-1988 (?POSIX.1?) defined a standard tar file format to be

read and written by compliant implementations of tar(1). This format is

often called the ?ustar? format, after the magic value used in the

header. (The name is an acronym for ?Unix Standard TAR?.) It extends

the historic format with new fields:

struct header_posix_ustar {
char name[100];
char mode|[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char checksum[8];
char typeflag[1];
char linkname[100];
char magicl6];
char version[2];
char uname[32];
char gname[32];
char devmajor[8];

char devminor[8];

Page 4/19

char prefix[155];
char pad[12];
¥
typeflag

Type of entry. POSIX extended the earlier linkflag field with

several new type values:

?0? Regular file. NUL should be treated as a synonym, for
compatibility purposes.

?1? Hard link.

?2? Symbolic link.

?3? Character device node.

?4? Block device node.

?5? Directory.

?6? FIFO node.

?7? Reserved.

Other A POSIX-compliant implementation must treat any unrecog?
nized typeflag value as a regular file. In particular,
writers should ensure that all entries have a valid file?
name so that they can be restored by readers that do not
support the corresponding extension. Uppercase letters
"A" through "Z" are reserved for custom extensions. Note
that sockets and whiteout entries are not archivable.

It is worth noting that the size field, in particular, has dif?

ferent meanings depending on the type. For regular files, of

course, it indicates the amount of data following the header.

For directories, it may be used to indicate the total size of all

files in the directory, for use by operating systems that pre-al?

locate directory space. For all other types, it should be set to

zero by writers and ignored by readers.

magic Contains the magic value ?ustar? followed by a NUL byte to indi?
cate that this is a POSIX standard archive. Full compliance re?

quires the uname and gname fields be properly set.

version Page 5/19

Version. This should be ?00? (two copies of the ASCII digit
zero) for POSIX standard archives.
uname, gname
User and group names, as null-terminated ASCII strings. These
should be used in preference to the uid/gid values when they are
set and the corresponding names exist on the system.
devmajor, devminor
Major and minor numbers for character device or block device en?
try.
name, prefix
If the pathname is too long to fit in the 100 bytes provided by
the standard format, it can be split at any / character with the
first portion going into the prefix field. If the prefix field
is not empty, the reader will prepend the prefix value and a /
character to the regular name field to obtain the full pathname.
The standard does not require a trailing / character on directory
names, though most implementations still include this for compat?
ibility reasons.
Note that all unused bytes must be set to NUL.
Field termination is specified slightly differently by POSIX than by pre?
vious implementations. The magic, uname, and gname fields must have a
trailing NUL. The pathname, linkname, and prefix fields must have a
trailing NUL unless they fill the entire field. (In particular, it is
possible to store a 256-character pathname if it happens to have a / as
the 156th character.) POSIX requires numeric fields to be zero-padded in
the front, and requires them to be terminated with either space or NUL
characters.
Currently, most tar implementations comply with the ustar format, occa?
sionally extending it by adding new fields to the blank area at the end
of the header record.
Numeric Extensions
There have been several attempts to extend the range of sizes or times

supported by modifying how numbers are stored in the header.

Page 6/19

One obvious extension to increase the size of files is to eliminate the
terminating characters from the various numeric fields. For example, the
standard only allows the size field to contain 11 octal digits, reserving
the twelfth byte for a trailing NUL character. Allowing 12 octal digits
allows file sizes up to 64 GB.
Another extension, utilized by GNU tar, star, and other newer tar imple?
mentations, permits binary numbers in the standard numeric fields. This
is flagged by setting the high bit of the first byte. The remainder of
the field is treated as a signed twos-complement value. This permits
95-bit values for the length and time fields and 63-bit values for the
uid, gid, and device numbers. In particular, this provides a consistent
way to handle negative time values. GNU tar supports this extension for
the length, mtime, ctime, and atime fields. Joerg Schilling's star pro?
gram and the libarchive library support this extension for all numeric
fields. Note that this extension is largely obsoleted by the extended
attribute record provided by the pax interchange format.
Another early GNU extension allowed base-64 values rather than octal.
This extension was short-lived and is no longer supported by any imple?
mentation.

Pax Interchange Format
There are many attributes that cannot be portably stored in a POSIX ustar
archive. |EEE Std 1003.1-2001 (?POSIX.1?) defined a ?pax interchange
format? that uses two new types of entries to hold text-formatted meta?
data that applies to following entries. Note that a pax interchange for?
mat archive is a ustar archive in every respect. The new data is stored
in ustar-compatible archive entries that use the ?x? or ?g? typeflag. In
particular, older implementations that do not fully support these exten?
sions will extract the metadata into regular files, where the metadata
can be examined as necessary.
An entry in a pax interchange format archive consists of one or two stan?
dard ustar entries, each with its own header and data. The first op?
tional entry stores the extended attributes for the following entry.

This optional first entry has an "x" typeflag and a size field that indi? Page 7/19

cates the total size of the extended attributes. The extended attributes
themselves are stored as a series of text-format lines encoded in the
portable UTF-8 encoding. Each line consists of a decimal number, a
space, a key string, an equals sign, a value string, and a new line. The
decimal number indicates the length of the entire line, including the
initial length field and the trailing newline. An example of such a
field is:
25 ctime=1084839148.1212\n
Keys in all lowercase are standard keys. Vendors can add their own keys
by prefixing them with an all uppercase vendor name and a period. Note
that, unlike the historic header, numeric values are stored using deci?
mal, not octal. A description of some common keys follows:
atime, ctime, mtime
File access, inode change, and modification times. These fields
can be negative or include a decimal point and a fractional
value.
hdrcharset
The character set used by the pax extension values. By default,
all textual values in the pax extended attributes are assumed to
be in UTF-8, including pathnames, user names, and group names.
In some cases, it is not possible to translate local conventions
into UTF-8. If this key is present and the value is the six-
character ASCII string ?BINARY?, then all textual values are as?
sumed to be in a platform-dependent multi-byte encoding. Note
that there are only two valid values for this key: ?BINARY? or
?1SO-IR 10646 2000 UTF-8?. No other values are permitted by the
standard, and the latter value should generally not be used as it
is the default when this key is not specified. In particular,
this flag should not be used as a general mechanism to allow
filenames to be stored in arbitrary encodings.
uname, uid, gname, gid
User name, group name, and numeric UID and GID values. The user

name and group name stored here are encoded in UTF8 and can thus

Page 8/19

include non-ASCII characters. The UID and GID fields can be of
arbitrary length.

linkpath
The full path of the linked-to file. Note that this is encoded
in UTF8 and can thus include non-ASCII characters.

path The full pathname of the entry. Note that this is encoded in
UTF8 and can thus include non-ASCII characters.

realtime.*, security.*
These keys are reserved and may be used for future standardiza?
tion.

size The size of the file. Note that there is no length limit on this
field, allowing conforming archives to store files much larger
than the historic 8GB limit.

SCHILY .*
Vendor-specific attributes used by Joerg Schilling's star imple?
mentation.

SCHILY .acl.access, SCHILY .acl.default, SCHILY .acl.ace
Stores the access, default and NFSv4 ACLs as textual strings in a
format that is an extension of the format specified by POSIX.1e
draft 17. In particular, each user or group access specification
can include an additional colon-separated field with the numeric
UID or GID. This allows ACLs to be restored on systems that may
not have complete user or group information available (such as
when NIS/YP or LDAP services are temporarily unavailable).

SCHILY.devminor, SCHILY.devmajor
The full minor and major numbers for device nodes.

SCHILY .fflags
The file flags.

SCHILY .realsize
The full size of the file on disk. XXX explain? XXX

SCHILY.dev, SCHILY.ino, SCHILY.nlinks
The device number, inode number, and link count for the entry.

In particular, note that a pax interchange format archive using

Page 9/19

Joerg Schilling's SCHILY.* extensions can store all of the data
from struct stat.
LIBARCHIVE.*
Vendor-specific attributes used by the libarchive library and
programs that use it.
LIBARCHIVE.creationtime
The time when the file was created. (This should not be confused
with the POSIX ?ctime? attribute, which refers to the time when
the file metadata was last changed.)
LIBARCHIVE.xattr.namespace.key
Libarchive stores POSIX.1le-style extended attributes using keys
of this form. The key value is URL-encoded: All non-ASCII char?
acters and the two special characters ?=? and ?%? are encoded as
?%? followed by two uppercase hexadecimal digits. The value of
this key is the extended attribute value encoded in base 64. XXX
Detail the base-64 format here XXX
VENDOR.*
XXX document other vendor-specific extensions XXX
Any values stored in an extended attribute override the corresponding
values in the regular tar header. Note that compliant readers should ig?
nore the regular fields when they are overridden. This is important, as
existing archivers are known to store non-compliant values in the stan?
dard header fields in this situation. There are no limits on length for
any of these fields. In particular, numeric fields can be arbitrarily
large. All text fields are encoded in UTF8. Compliant writers should
store only portable 7-bit ASCII characters in the standard ustar header
and use extended attributes whenever a text value contains non-ASCII
characters.
In addition to the x entry described above, the pax interchange format
also supports a g entry. The g entry is identical in format, but speci?
fies attributes that serve as defaults for all subsequent archive en?
tries. The g entry is not widely used.

Besides the new x and g entries, the pax interchange format has a few

Page 10/19

other minor variations from the earlier ustar format. The most troubling
one is that hardlinks are permitted to have data following them. This
allows readers to restore any hardlink to a file without having to rewind
the archive to find an earlier entry. However, it creates complications
for robust readers, as it is no longer clear whether or not they should
ignore the size field for hardlink entries.

GNU Tar Archives
The GNU tar program started with a pre-POSIX format similar to that de?
scribed earlier and has extended it using several different mechanisms:

It added new fields to the empty space in the header (some of which was
later used by POSIX for conflicting purposes); it allowed the header to

be continued over multiple records; and it defined new entries that mod?
ify following entries (similar in principle to the x entry described

above, but each GNU special entry is single-purpose, unlike the general-
purpose x entry). As a result, GNU tar archives are not POSIX compati?
ble, although more lenient POSIX-compliant readers can successfully ex?
tract most GNU tar archives.

struct header_gnu_tar {

char name[100];
char mode[8];
char uid[8];

char gid[8];

char size[12];
char mtime[12];
char checksum([8];
char typeflag[1];
char linkname[100];
char magic[6];
char version[2];
char uname[32];
char gname[32];
char devmajor[8];

char devminor[8];

Page 11/19

h

typeflag

char atime[12];
char ctime[12];
char offset[12];
char longnames[4];
char unused[1];
struct {
char offset[12];
char numbytes[12];
} sparse[4];
char isextended[1];
char realsize[12];

char pad[17];

GNU tar uses the following special entry types, in addition to

those defined by POSIX:

7

GNU tar treats type "7" records identically to type "0"

records, except on one obscure RTOS where they are used

to indicate the pre-allocation of a contiguous file on
disk.

This indicates a directory entry. Unlike the POSIX-stan?
dard "5" typeflag, the header is followed by data records
listing the names of files in this directory. Each name
is preceded by an ASCII "Y" if the file is stored in this
archive or "N" if the file is not stored in this archive.

Each name is terminated with a null, and an extra null
marks the end of the name list. The purpose of this en?
try is to support incremental backups; a program restor?
ing from such an archive may wish to delete files on disk
that did not exist in the directory when the archive was
made.

Note that the "D" typeflag specifically violates POSIX,

which requires that unrecognized typeflags be restored as

Page 12/19

normal files. In this case, restoring the "D" entry as a
file could interfere with subsequent creation of the
like-named directory.

The data for this entry is a long linkname for the fol?
lowing regular entry.

The data for this entry is a long pathname for the fol?
lowing regular entry.

This is a continuation of the last file on the previous
volume. GNU multi-volume archives guarantee that each
volume begins with a valid entry header. To ensure this,
a file may be split, with part stored at the end of one
volume, and part stored at the beginning of the next vol?
ume. The "M" typeflag indicates that this entry contin?
ues an existing file. Such entries can only occur as the
first or second entry in an archive (the latter only if
the first entry is a volume label). The size field spec?
ifies the size of this entry. The offset field at bytes
369-380 specifies the offset where this file fragment be?
gins. The realsize field specifies the total size of the
file (which must equal size plus offset). When extract?
ing, GNU tar checks that the header file name is the one
it is expecting, that the header offset is in the correct
sequence, and that the sum of offset and size is equal to
realsize.

Type "N" records are no longer generated by GNU tar.
They contained a list of files to be renamed or symlinked
after extraction; this was originally used to support
long names. The contents of this record are a text de?
scription of the operations to be done, in the form
?Rename %s to %s\n? or ?Symlink %s to %s\n?; in either
case, both filenames are escaped using K&R C syntax. Due
to security concerns, "N" records are now generally ig?

nored when reading archives.

Page 13/19

S This is a ?sparse? regular file. Sparse files are stored
as a series of fragments. The header contains a list of
fragment offset/length pairs. If more than four such en?
tries are required, the header is extended as necessary
with ?extra? header extensions (an older format that is
no longer used), or ?sparse? extensions.

V The name field should be interpreted as a tape/volume
header name. This entry should generally be ignored on
extraction.

magic The magic field holds the five characters ?ustar? followed by a
space. Note that POSIX ustar archives have a trailing null.
version

The version field holds a space character followed by a null.

Note that POSIX ustar archives use two copies of the ASCII digit

?07?.

atime, ctime

The time the file was last accessed and the time of last change

of file information, stored in octal as with mtime.

longnames

This field is apparently no longer used.

Sparse offset / numbytes

Each such structure specifies a single fragment of a sparse file.

The two fields store values as octal numbers. The fragments are

each padded to a multiple of 512 bytes in the archive. On ex?

traction, the list of fragments is collected from the header (in?
cluding any extension headers), and the data is then read and
written to the file at appropriate offsets.

isextended

If this is set to non-zero, the header will be followed by addi?

tional ?sparse header? records. Each such record contains infor?

mation about as many as 21 additional sparse blocks as shown
here:

struct gnu_sparse_header {

Page 14/19

struct {
char offset[12];
char numbytes[12];
} sparse[21];
char isextended[1];

char padding[7];

realsize
A binary representation of the file's complete size, with a much
larger range than the POSIX file size. In particular, with M
type files, the current entry is only a portion of the file. In
that case, the POSIX size field will indicate the size of this
entry; the realsize field will indicate the total size of the
file.
GNU tar pax archives
GNU tar 1.14 (XXX check this XXX) and later will write pax interchange
format archives when you specify the --posix flag. This format follows
the pax interchange format closely, using some SCHILY tags and introduc?
ing new keywords to store sparse file information. There have been three
iterations of the sparse file support, referred to as ?0.0?, ?0.1?, and
?1.07.
GNU.sparse.numblocks, GNU.sparse.offset, GNU.sparse.numbytes,
GNU.sparse.size
The ?0.0? format used an initial GNU.sparse.numblocks attribute
to indicate the number of blocks in the file, a pair of
GNU.sparse.offset and GNU.sparse.numbytes to indicate the offset
and size of each block, and a single GNU.sparse.size to indicate
the full size of the file. This is not the same as the size in
the tar header because the latter value does not include the size
of any holes. This format required that the order of attributes
be preserved and relied on readers accepting multiple appearances
of the same attribute names, which is not officially permitted by

the standards. Page 15/19

GNU.sparse.map
The ?0.17? format used a single attribute that stored a comma-sep?
arated list of decimal numbers. Each pair of numbers indicated
the offset and size, respectively, of a block of data. This does
not work well if the archive is extracted by an archiver that
does not recognize this extension, since many pax implementations
simply discard unrecognized attributes.

GNU.sparse.major, GNU.sparse.minor, GNU.sparse.name, GNU.sparse.realsize
The ?1.0? format stores the sparse block map in one or more
512-byte blocks prepended to the file data in the entry body.

The pax attributes indicate the existence of this map (via the
GNU.sparse.major and GNU.sparse.minor fields) and the full size
of the file. The GNU.sparse.name holds the true name of the
file. To avoid confusion, the name stored in the regular tar
header is a modified name so that extraction errors will be ap?
parent to users.

Solaris Tar

XXX More Details Needed XXX

Solaris tar (beginning with SunOS XXX 5.7 ?? XXX) supports an ?extended?

format that is fundamentally similar to pax interchange format, with the

following differences:

? Extended attributes are stored in an entry whose type is X, not
X, as used by pax interchange format. The detailed format of
this entry appears to be the same as detailed above for the x en?
try.

? An additional A header is used to store an ACL for the following
regular entry. The body of this entry contains a seven-digit oc?
tal number followed by a zero byte, followed by the textual ACL
description. The octal value is the number of ACL entries plus a
constant that indicates the ACL type: 01000000 for POSIX.1e ACLs
and 03000000 for NFSv4 ACLs.

AIX Tar

XXX More details needed XXX Page 16/19

AIX Tar uses a ustar-formatted header with the type A for storing coded
ACL information. Unlike the Solaris format, AlX tar writes this header
after the regular file body to which it applies. The pathname in this
header is either NFS4 or AIXC to indicate the type of ACL stored. The
actual ACL is stored in platform-specific binary format.

Mac OS X Tar
The tar distributed with Apple's Mac OS X stores most regular files as
two separate files in the tar archive. The two files have the same name
except that the first one has ?._? prepended to the last path element.
This special file stores an AppleDouble-encoded binary blob with addi?
tional metadata about the second file, including ACL, extended at?
tributes, and resources. To recreate the original file on disk, each
separate file can be extracted and the Mac OS X copyfile() function can
be used to unpack the separate metadata file and apply it to th regular
file. Conversely, the same function provides a ?pack? option to encode
the extended metadata from a file into a separate file whose contents can
then be put into a tar archive.
Note that the Apple extended attributes interact badly with long file?
names. Since each file is stored with the full name, a separate set of
extensions needs to be included in the archive for each one, doubling the
overhead required for files with long names.

Summary of tar type codes
The following list is a condensed summary of the type codes used in tar
header records generated by different tar implementations. More details
about specific implementations can be found above:
NUL Early tar programs stored a zero byte for regular files.
0 POSIX standard type code for a regular file.
1 POSIX standard type code for a hard link description.
2 POSIX standard type code for a symbolic link description.
3 POSIX standard type code for a character device node.
4 POSIX standard type code for a block device node.
5 POSIX standard type code for a directory.

6 POSIX standard type code for a FIFO.

Page 17/19

7 POSIX reserved.

7 GNU tar used for pre-allocated files on some systems.

A Solaris tar ACL description stored prior to a regular file header.
A AlX tar ACL description stored after the file body.

D GNU tar directory dump.

K GNU tar long linkname for the following header.

L GNuU tar long pathname for the following header.
M GNU tar multivolume marker, indicating the file is a continuation of
a file from the previous volume.
N GNU tar long filename support. Deprecated.
S GNU tar sparse regular file.
V GNU tar tape/volume header name.
X Solaris tar general-purpose extension header.
g POSIX pax interchange format global extensions.
x POSIX pax interchange format per-file extensions.
SEE ALSO
ar(1), pax(1), tar(1)
STANDARDS
The tar utility is no longer a part of POSIX or the Single Unix Standard.
It last appeared in Version 2 of the Single UNIX Specification (?SUSv27?).
It has been supplanted in subsequent standards by pax(1). The ustar for?
mat is currently part of the specification for the pax(1) utility. The
pax interchange file format is new with IEEE Std 1003.1-2001 (?POSIX.1?).
HISTORY
A tar command appeared in Seventh Edition Unix, which was released in
January, 1979. It replaced the tp program from Fourth Edition Unix which
in turn replaced the tap program from First Edition Unix. John Gilmore's
pdtar public-domain implementation (circa 1987) was highly influential
and formed the basis of GNU tar (circa 1988). Joerg Shilling's star
archiver is another open-source (CDDL) archiver (originally developed
circa 1985) which features complete support for pax interchange format.
This documentation was written as part of the libarchive and bsdtar

project by Tim Kientzle <kientzle@FreeBSD.org>. Page 18/19

BSD December 27, 2016 BSD

Page 19/19

