
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-cake.8' command

$ man tc-cake.8

CAKE(8) Linux CAKE(8)

NAME

 CAKE - Common Applications Kept Enhanced (CAKE)

SYNOPSIS

 tc qdisc ... cake

 [bandwidth RATE | unlimited* | autorate-ingress]

 [rtt TIME | datacentre | lan | metro | regional | internet* | oceanic

 | satellite | interplanetary]

 [besteffort | diffserv8 | diffserv4 | diffserv3*]

 [flowblind | srchost | dsthost | hosts | flows | dual-srchost | dual-

 dsthost | triple-isolate*]

 [nat | nonat*]

 [wash | nowash*]

 [split-gso* | no-split-gso]

 [ack-filter | ack-filter-aggressive | no-ack-filter*]

 [memlimit LIMIT]

 [fwmark MASK]

 [ptm | atm | noatm*]

 [overhead N | conservative | raw*]

 [mpu N]

 [ingress | egress*]

 (* marks defaults)

DESCRIPTION Page 1/14

 CAKE (Common Applications Kept Enhanced) is a shaping-capable queue

 discipline which uses both AQM and FQ. It combines COBALT, which is an

 AQM algorithm combining Codel and BLUE, a shaper which operates in

 deficit mode, and a variant of DRR++ for flow isolation. 8-way set-as?

 sociative hashing is used to virtually eliminate hash collisions. Pri?

 ority queuing is available through a simplified diffserv implementa?

 tion. Overhead compensation for various encapsulation schemes is

 tightly integrated.

 All settings are optional; the default settings are chosen to be sensi?

 ble in most common deployments. Most people will only need to set the

 bandwidth parameter to get useful results, but reading the Overhead

 Compensation and Round Trip Time sections is strongly encouraged.

SHAPER PARAMETERS

 CAKE uses a deficit-mode shaper, which does not exhibit the initial

 burst typical of token-bucket shapers. It will automatically burst

 precisely as much as required to maintain the configured throughput.

 As such, it is very straightforward to configure.

 unlimited (default)

 No limit on the bandwidth.

 bandwidth RATE

 Set the shaper bandwidth. See tc(8) or examples below for details

 of the RATE value.

 autorate-ingress

 Automatic capacity estimation based on traffic arriving at this

 qdisc. This is most likely to be useful with cellular links, which

 tend to change quality randomly. A bandwidth parameter can be used in

 conjunction to specify an initial estimate. The shaper will periodi?

 cally be set to a bandwidth slightly below the estimated rate. This

 estimator cannot estimate the bandwidth of links downstream of itself.

OVERHEAD COMPENSATION PARAMETERS

 The size of each packet on the wire may differ from that seen by Linux.

 The following parameters allow CAKE to compensate for this difference

 by internally considering each packet to be bigger than Linux informs Page 2/14

 it. To assist users who are not expert network engineers, keywords

 have been provided to represent a number of common link technologies.

 Manual Overhead Specification

 overhead BYTES

 Adds BYTES to the size of each packet. BYTES may be negative;

 values between -64 and 256 (inclusive) are accepted.

 mpu BYTES

 Rounds each packet (including overhead) up to a minimum length

 BYTES. BYTES may not be negative; values between 0 and 256 (inclusive)

 are accepted.

 atm

 Compensates for ATM cell framing, which is normally found on ADSL

 links. This is performed after the overhead parameter above. ATM uses

 fixed 53-byte cells, each of which can carry 48 bytes payload.

 ptm

 Compensates for PTM encoding, which is normally found on VDSL2

 links and uses a 64b/65b encoding scheme. It is even more efficient to

 simply derate the specified shaper bandwidth by a factor of 64/65 or

 0.984. See ITU G.992.3 Annex N and IEEE 802.3 Section 61.3 for details.

 noatm

 Disables ATM and PTM compensation.

 Failsafe Overhead Keywords

 These two keywords are provided for quick-and-dirty setup. Use them if

 you can't be bothered to read the rest of this section.

 raw (default)

 Turns off all overhead compensation in CAKE. The packet size re?

 ported by Linux will be used directly.

 Other overhead keywords may be added after "raw". The effect of

 this is to make the overhead compensation operate relative to the re?

 ported packet size, not the underlying IP packet size.

 conservative

 Compensates for more overhead than is likely to occur on any

 widely-deployed link technology. Page 3/14

 Equivalent to overhead 48 atm.

 ADSL Overhead Keywords

 Most ADSL modems have a way to check which framing scheme is in use.

 Often this is also specified in the settings document provided by the

 ISP. The keywords in this section are intended to correspond with

 these sources of information. All of them implicitly set the atm flag.

 pppoa-vcmux

 Equivalent to overhead 10 atm

 pppoa-llc

 Equivalent to overhead 14 atm

 pppoe-vcmux

 Equivalent to overhead 32 atm

 pppoe-llcsnap

 Equivalent to overhead 40 atm

 bridged-vcmux

 Equivalent to overhead 24 atm

 bridged-llcsnap

 Equivalent to overhead 32 atm

 ipoa-vcmux

 Equivalent to overhead 8 atm

 ipoa-llcsnap

 Equivalent to overhead 16 atm

 See also the Ethernet Correction Factors section below.

 VDSL2 Overhead Keywords

 ATM was dropped from VDSL2 in favour of PTM, which is a much more

 straightforward framing scheme. Some ISPs retained PPPoE for compati?

 bility with their existing back-end systems.

 pppoe-ptm

 Equivalent to overhead 30 ptm

 PPPoE: 2B PPP + 6B PPPoE +

 ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check

 Sequence +

 PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC Page 4/14

 (PTM-FCS)

 bridged-ptm

 Equivalent to overhead 22 ptm

 ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B Frame Check

 Sequence +

 PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-CRC

 (PTM-FCS)

 See also the Ethernet Correction Factors section below.

 DOCSIS Cable Overhead Keyword

 DOCSIS is the universal standard for providing Internet service over

 cable-TV infrastructure.

 In this case, the actual on-wire overhead is less important than the

 packet size the head-end equipment uses for shaping and metering. This

 is specified to be an Ethernet frame including the CRC (aka FCS).

 docsis

 Equivalent to overhead 18 mpu 64 noatm

 Ethernet Overhead Keywords

 ethernet

 Accounts for Ethernet's preamble, inter-frame gap, and Frame Check

 Sequence. Use this keyword when the bottleneck being shaped for is an

 actual Ethernet cable.

 Equivalent to overhead 38 mpu 84 noatm

 ether-vlan

 Adds 4 bytes to the overhead compensation, accounting for an IEEE

 802.1Q VLAN header appended to the Ethernet frame header. NB: Some

 ISPs use one or even two of these within PPPoE; this keyword may be re?

 peated as necessary to express this.

ROUND TRIP TIME PARAMETERS

 Active Queue Management (AQM) consists of embedding congestion signals

 in the packet flow, which receivers use to instruct senders to slow

 down when the queue is persistently occupied. CAKE uses ECN signalling

 when available, and packet drops otherwise, according to a combination

 of the Codel and BLUE AQM algorithms called COBALT. Page 5/14

 Very short latencies require a very rapid AQM response to adequately

 control latency. However, such a rapid response tends to impair

 throughput when the actual RTT is relatively long. CAKE allows speci?

 fying the RTT it assumes for tuning various parameters. Actual RTTs

 within an order of magnitude of this will generally work well for both

 throughput and latency management.

 At the 'lan' setting and below, the time constants are similar in mag?

 nitude to the jitter in the Linux kernel itself, so congestion might be

 signalled prematurely. The flows will then become sparse and total

 throughput reduced, leaving little or no back-pressure for the fairness

 logic to work against. Use the "metro" setting for local lans unless

 you have a custom kernel.

 rtt TIME

 Manually specify an RTT.

 datacentre

 For extremely high-performance 10GigE+ networks only. Equivalent

 to rtt 100us.

 lan

 For pure Ethernet (not Wi-Fi) networks, at home or in the office.

 Don't use this when shaping for an Internet access link. Equivalent to

 rtt 1ms.

 metro

 For traffic mostly within a single city. Equivalent to rtt 10ms.

 regional

 For traffic mostly within a European-sized country. Equivalent to

 rtt 30ms.

 internet (default)

 This is suitable for most Internet traffic. Equivalent to rtt

 100ms.

 oceanic

 For Internet traffic with generally above-average latency, such as

 that suffered by Australasian residents. Equivalent to rtt 300ms.

 satellite Page 6/14

 For traffic via geostationary satellites. Equivalent to rtt

 1000ms.

 interplanetary

 So named because Jupiter is about 1 light-hour from Earth. Use

 this to (almost) completely disable AQM actions. Equivalent to rtt

 3600s.

FLOW ISOLATION PARAMETERS

 With flow isolation enabled, CAKE places packets from different flows

 into different queues, each of which carries its own AQM state. Pack?

 ets from each queue are then delivered fairly, according to a DRR++ al?

 gorithm which minimizes latency for "sparse" flows. CAKE uses a set-

 associative hashing algorithm to minimize flow collisions.

 These keywords specify whether fairness based on source address, desti?

 nation address, individual flows, or any combination of those is de?

 sired.

 flowblind

 Disables flow isolation; all traffic passes through a single queue

 for each tin.

 srchost

 Flows are defined only by source address. Could be useful on the

 egress path of an ISP backhaul.

 dsthost

 Flows are defined only by destination address. Could be useful on

 the ingress path of an ISP backhaul.

 hosts

 Flows are defined by source-destination host pairs. This is host

 isolation, rather than flow isolation.

 flows

 Flows are defined by the entire 5-tuple of source address, desti?

 nation address, transport protocol, source port and destination port.

 This is the type of flow isolation performed by SFQ and fq_codel.

 dual-srchost

 Flows are defined by the 5-tuple, and fairness is applied first Page 7/14

 over source addresses, then over individual flows. Good for use on

 egress traffic from a LAN to the internet, where it'll prevent any one

 LAN host from monopolising the uplink, regardless of the number of

 flows they use.

 dual-dsthost

 Flows are defined by the 5-tuple, and fairness is applied first

 over destination addresses, then over individual flows. Good for use

 on ingress traffic to a LAN from the internet, where it'll prevent any

 one LAN host from monopolising the downlink, regardless of the number

 of flows they use.

 triple-isolate (default)

 Flows are defined by the 5-tuple, and fairness is applied over

 source *and* destination addresses intelligently (ie. not merely by

 host-pairs), and also over individual flows. Use this if you're not

 certain whether to use dual-srchost or dual-dsthost; it'll do both jobs

 at once, preventing any one host on *either* side of the link from mo?

 nopolising it with a large number of flows.

 nat

 Instructs Cake to perform a NAT lookup before applying flow-isola?

 tion rules, to determine the true addresses and port numbers of the

 packet, to improve fairness between hosts "inside" the NAT. This has

 no practical effect in "flowblind" or "flows" modes, or if NAT is per?

 formed on a different host.

 nonat (default)

 Cake will not perform a NAT lookup. Flow isolation will be per?

 formed using the addresses and port numbers directly visible to the in?

 terface Cake is attached to.

PRIORITY QUEUE PARAMETERS

 CAKE can divide traffic into "tins" based on the Diffserv field. Each

 tin has its own independent set of flow-isolation queues, and is ser?

 viced based on a WRR algorithm. To avoid perverse Diffserv marking in?

 centives, tin weights have a "priority sharing" value when bandwidth

 used by that tin is below a threshold, and a lower "bandwidth sharing" Page 8/14

 value when above. Bandwidth is compared against the threshold using

 the same algorithm as the deficit-mode shaper.

 Detailed customisation of tin parameters is not provided. The follow?

 ing presets perform all necessary tuning, relative to the current

 shaper bandwidth and RTT settings.

 besteffort

 Disables priority queuing by placing all traffic in one tin.

 precedence

 Enables legacy interpretation of TOS "Precedence" field. Use of

 this preset on the modern Internet is firmly discouraged.

 diffserv4

 Provides a general-purpose Diffserv implementation with four tins:

 Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally

 low priority.

 Best Effort (general), 100% threshold.

 Video (AF4x, AF3x, CS3, AF2x, CS2, TOS4, TOS1), 50% thresh?

 old.

 Voice (CS7, CS6, EF, VA, CS5, CS4), 25% threshold.

 diffserv3 (default)

 Provides a simple, general-purpose Diffserv implementation with

 three tins:

 Bulk (CS1, LE in kernel v5.9+), 6.25% threshold, generally

 low priority.

 Best Effort (general), 100% threshold.

 Voice (CS7, CS6, EF, VA, TOS4), 25% threshold, reduced Codel

 interval.

 fwmark MASK

 This options turns on fwmark-based overriding of CAKE's tin selec?

 tion. If set, the option specifies a bitmask that will be applied to

 the fwmark associated with each packet. If the result of this masking

 is non-zero, the result will be right-shifted by the number of least-

 significant unset bits in the mask value, and the result will be used

 as a the tin number for that packet. This can be used to set policies Page 9/14

 in a firewall script that will override CAKE's built-in tin selection.

OTHER PARAMETERS

 memlimit LIMIT

 Limit the memory consumed by Cake to LIMIT bytes. Note that this

 does not translate directly to queue size (so do not size this based on

 bandwidth delay product considerations, but rather on worst case ac?

 ceptable memory consumption), as there is some overhead in the data

 structures containing the packets, especially for small packets.

 By default, the limit is calculated based on the bandwidth and RTT

 settings.

 wash

 Traffic entering your diffserv domain is frequently mis-marked in

 transit from the perspective of your network, and traffic exiting yours

 may be mis-marked from the perspective of the transiting provider.

 Apply the wash option to clear all extra diffserv (but not ECN bits),

 after priority queuing has taken place.

 If you are shaping inbound, and cannot trust the diffserv markings (as

 is the case for Comcast Cable, among others), it is best to use a sin?

 gle queue "besteffort" mode with wash.

 split-gso

 This option controls whether CAKE will split General Segmentation

 Offload (GSO) super-packets into their on-the-wire components and de?

 queue them individually.

 Super-packets are created by the networking stack to improve effi?

 ciency. However, because they are larger they take longer to dequeue,

 which translates to higher latency for competing flows, especially at

 lower bandwidths. CAKE defaults to splitting GSO packets to achieve the

 lowest possible latency. At link speeds higher than 10 Gbps, setting

 the no-split-gso parameter can increase the maximum achievable through?

 put by retaining the full GSO packets.

OVERRIDING CLASSIFICATION WITH TC FILTERS

 CAKE supports overriding of its internal classification of packets

 through the tc filter mechanism. Packets can be assigned to different Page 10/14

 priority tins by setting the priority field on the skb, and the flow

 hashing can be overridden by setting the classid parameter.

 Tin override

 To assign a priority tin, the major number of the priority

 field needs to match the qdisc handle of the cake instance; if it does,

 the minor number will be interpreted as the tin index. For example, to

 classify all ICMP packets as 'bulk', the following filter can be used:

 # tc qdisc replace dev eth0 handle 1: root cake diffserv3

 # tc filter add dev eth0 parent 1: protocol ip prio 1 \

 u32 match icmp type 0 0 action skbedit priority 1:1

 Flow hash override

 To override flow hashing, the classid can be set. CAKE will in?

 terpret the major number of the classid as the host hash used in host

 isolation mode, and the minor number as the flow hash used for flow-

 based queueing. One or both of those can be set, and will be used if

 the relevant flow isolation parameter is set (i.e., the major number

 will be ignored if CAKE is not configured in hosts mode, and the minor

 number will be ignored if CAKE is not configured in flows mode).

 This example will assign all ICMP packets to the first queue:

 # tc qdisc replace dev eth0 handle 1: root cake

 # tc filter add dev eth0 parent 1: protocol ip prio 1 \

 u32 match icmp type 0 0 classid 0:1

 If only one of the host and flow overrides is set, CAKE will compute

 the other hash from the packet as normal. Note, however, that the host

 isolation mode works by assigning a host ID to the flow queue; so if

 overriding both host and flow, the same flow cannot have more than one

 host assigned. In addition, it is not possible to assign different

 source and destination host IDs through the override mechanism; if a

 host ID is assigned, it will be used as both source and destination

 host.

EXAMPLES

 # tc qdisc delete root dev eth0

 # tc qdisc add root dev eth0 cake bandwidth 100Mbit ethernet Page 11/14

 # tc -s qdisc show dev eth0

 qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate

 rtt 100.0ms noatm overhead 38 mpu 84

 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)

 backlog 0b 0p requeues 0

 memory used: 0b of 5000000b

 capacity estimate: 100Mbit

 min/max network layer size: 65535 / 0

 min/max overhead-adjusted size: 65535 / 0

 average network hdr offset: 0

 Bulk Best Effort Voice

 thresh 6250Kbit 100Mbit 25Mbit

 target 5.0ms 5.0ms 5.0ms

 interval 100.0ms 100.0ms 100.0ms

 pk_delay 0us 0us 0us

 av_delay 0us 0us 0us

 sp_delay 0us 0us 0us

 pkts 0 0 0

 bytes 0 0 0

 way_inds 0 0 0

 way_miss 0 0 0

 way_cols 0 0 0

 drops 0 0 0

 marks 0 0 0

 ack_drop 0 0 0

 sp_flows 0 0 0

 bk_flows 0 0 0

 un_flows 0 0 0

 max_len 0 0 0

 quantum 300 1514 762

 After some use:

 # tc -s qdisc show dev eth0

 qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate Page 12/14

 rtt 100.0ms noatm overhead 38 mpu 84

 Sent 44709231 bytes 31931 pkt (dropped 45, overlimits 93782 requeues

 0)

 backlog 33308b 22p requeues 0

 memory used: 292352b of 5000000b

 capacity estimate: 100Mbit

 min/max network layer size: 28 / 1500

 min/max overhead-adjusted size: 84 / 1538

 average network hdr offset: 14

 Bulk Best Effort Voice

 thresh 6250Kbit 100Mbit 25Mbit

 target 5.0ms 5.0ms 5.0ms

 interval 100.0ms 100.0ms 100.0ms

 pk_delay 8.7ms 6.9ms 5.0ms

 av_delay 4.9ms 5.3ms 3.8ms

 sp_delay 727us 1.4ms 511us

 pkts 2590 21271 8137

 bytes 3081804 30302659 11426206

 way_inds 0 46 0

 way_miss 3 17 4

 way_cols 0 0 0

 drops 20 15 10

 marks 0 0 0

 ack_drop 0 0 0

 sp_flows 2 4 1

 bk_flows 1 2 1

 un_flows 0 0 0

 max_len 1514 1514 1514

 quantum 300 1514 762

SEE ALSO

 tc(8), tc-codel(8), tc-fq_codel(8), tc-htb(8)

AUTHORS

 Cake's principal author is Jonathan Morton, with contributions from Page 13/14

 Tony Ambardar, Kevin Darbyshire-Bryant, Toke H?iland-J?rgensen, Sebas?

 tian Moeller, Ryan Mounce, Dean Scarff, Nils Andreas Svee, and Dave

 T?ht.

 This manual page was written by Loganaden Velvindron. Please report

 corrections to the Linux Networking mailing list <netdev@vger.ker?

 nel.org>.

iproute2 19 July 2018 CAKE(8)

Page 14/14

