
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-stab.8' command

$ man tc-stab.8

STAB(8) Linux STAB(8)

NAME

 tc-stab - Generic size table manipulations

SYNOPSIS

 tc qdisc add ... stab

 [mtu BYTES] [tsize SLOTS]

 [mpu BYTES] [overhead BYTES]

 [linklayer { adsl | atm | ethernet }] ...

OPTIONS

 For the description of BYTES - please refer to the UNITS section of

 tc(8).

 mtu

 maximum packet size we create size table for, assumed 2048 if not

 specified explicitly

 tsize

 required table size, assumed 512 if not specified explicitly

 mpu

 minimum packet size used in computations

 overhead

 per-packet size overhead (can be negative) used in computations

 linklayer

 required linklayer specification.

DESCRIPTION Page 1/4

 Size tables allow manipulation of packet sizes, as seen by the whole

 scheduler framework (of course, the actual packet size remains the

 same). Adjusted packet size is calculated only once - when a qdisc en?

 queues the packet. Initial root enqueue initializes it to the real

 packet's size.

 Each qdisc can use a different size table, but the adjusted size is

 stored in an area shared by whole qdisc hierarchy attached to the in?

 terface. The effect is that if you have such a setup, the last qdisc

 with a stab in a chain "wins". For example, consider HFSC with simple

 pfifo attached to one of its leaf classes. If that pfifo qdisc has

 stab defined, it will override lengths calculated during HFSC's en?

 queue; and in turn, whenever HFSC tries to dequeue a packet, it will

 use a potentially invalid size in its calculations. Normal setups will

 usually include stab defined only on root qdisc, but further overriding

 gives extra flexibility for less usual setups.

 The initial size table is calculated by tc tool using mtu and tsize pa?

 rameters. The algorithm sets each slot's size to the smallest power of

 2 value, so the whole mtu is covered by the size table. Neither tsize,

 nor mtu have to be power of 2 value, so the size table will usually

 support more than is required by mtu.

 For example, with mtu = 1500 and tsize = 128, a table with 128 slots

 will be created, where slot 0 will correspond to sizes 0-16, slot 1 to

 17 - 32, ..., slot 127 to 2033 - 2048. Sizes assigned to each slot de?

 pend on linklayer parameter.

 Stab calculation is also safe for an unusual case, when a size assigned

 to a slot would be larger than 2^16-1 (you will lose the accuracy

 though).

 During the kernel part of packet size adjustment, overhead will be

 added to original size, and then slot will be calculated. If the size

 would cause overflow, more than 1 slot will be used to get the final

 size. This of course will affect accuracy, but it's only a guard

 against unusual situations.

 Currently there are two methods of creating values stored in the size Page 2/4

 table - ethernet and atm (adsl):

 ethernet

 This is basically 1-1 mapping, so following our example from above

 (disregarding mpu for a moment) slot 0 would have 8, slot 1 would

 have 16 and so on, up to slot 127 with 2048. Note, that mpu > 0

 must be specified, and slots that would get less than specified by

 mpu will get mpu instead. If you don't specify mpu, the size table

 will not be created at all (it wouldn't make any difference), al?

 though any overhead value will be respected during calculations.

 atm, adsl

 ATM linklayer consists of 53 byte cells, where each of them pro?

 vides 48 bytes for payload. Also all the cells must be fully uti?

 lized, thus the last one is padded if/as necessary.

 When the size table is calculated, adjusted size that fits properly

 into lowest amount of cells is assigned to a slot. For example, a

 100 byte long packet requires three 48-byte payloads, so the final

 size would require 3 ATM cells - 159 bytes.

 For ATM size tables, 16 bytes sized slots are perfectly enough. The

 default values of mtu and tsize create 4 bytes sized slots.

TYPICAL OVERHEADS

 The following values are typical for different adsl scenarios (based on

 [1] and [2]):

 LLC based:

 PPPoA - 14 (PPP - 2, ATM - 12)

 PPPoE - 40+ (PPPoE - 8, ATM - 18, ethernet 14, possibly FCS - 4+padding)

 Bridged - 32 (ATM - 18, ethernet 14, possibly FCS - 4+padding)

 IPoA - 16 (ATM - 16)

 VC Mux based:

 PPPoA - 10 (PPP - 2, ATM - 8)

 PPPoE - 32+ (PPPoE - 8, ATM - 10, ethernet 14, possibly FCS - 4+padding)

 Bridged - 24+ (ATM - 10, ethernet 14, possibly FCS - 4+padding)

 IPoA - 8 (ATM - 8)

 There are a few important things regarding the above overheads: Page 3/4

 ? IPoA in LLC case requires SNAP, instead of LLC-NLPID (see rfc2684)

 - this is the reason why it actually takes more space than PPPoA.

 ? In rare cases, FCS might be preserved on protocols that include

 Ethernet frames (Bridged and PPPoE). In such situation, any Ether?

 net specific padding guaranteeing 64 bytes long frame size has to

 be included as well (see RFC2684). In the other words, it also

 guarantees that any packet you send will take minimum 2 atm cells.

 You should set mpu accordingly for that.

 ? When the size table is consulted, and you're shaping traffic for

 the sake of another modem/router, an Ethernet header (without pad?

 ding) will already be added to initial packet's length. You should

 compensate for that by subtracting 14 from the above overheads in

 this case. If you're shaping directly on the router (for example,

 with speedtouch usb modem) using ppp daemon, you're using raw ip

 interface without underlying layer2, so nothing will be added.

 For more thorough explanations, please see [1] and [2].

ETHERNET CARDS CONSIDERATIONS

 It's often forgotten that modern network cards (even cheap ones on

 desktop motherboards) and/or their drivers often support different of?

 floading mechanisms. In the context of traffic shaping, 'tso' and 'gso'

 might cause undesirable effects, due to massive TCP segments being con?

 sidered during traffic shaping (including stab calculations). For slow

 uplink interfaces, it's good to use ethtool to turn off offloading fea?

 tures.

SEE ALSO

 tc(8), tc-hfsc(7), tc-hfsc(8),

 [1] http://ace-host.stuart.id.au/russell/files/tc/tc-atm/

 [2] http://www.faqs.org/rfcs/rfc2684.html

 Please direct bugreports and patches to: <netdev@vger.kernel.org>

AUTHOR

 Manpage created by Michal Soltys (soltys@ziu.info)

iproute2 31 October 2011 STAB(8)

Page 4/4

