r*‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'unlinkat.2' command

$ man unlinkat.2

UNLINK(2) Linux Programmer's Manual UNLINK(2)
NAME
unlink, unlinkat - delete a name and possibly the file it refers to
SYNOPSIS
#include <unistd.h>
int unlink(const char *pathname);
#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>
int unlinkat(int dirfd, const char *pathname, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
unlinkat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE
DESCRIPTION
unlink() deletes a name from the filesystem. If that name was the last
link to a file and no processes have the file open, the file is deleted
and the space it was using is made available for reuse.
If the name was the last link to a file but any processes still have
the file open, the file will remain in existence until the last file
descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed. Page 1/4



If the name referred to a socket, FIFO, or device, the name for it is

removed but processes which have the object open may continue to use

it.

unlinkat()

The unlinkat() system call operates in exactly the same way as either

unlink() or rmdir(2) (depending on whether or not flags includes the

AT_REMOVEDIR flag) except for the differences described here.

If the pathname given in pathname is relative, then it is interpreted

relative to the directory referred to by the file descriptor dirfd

(rather than relative to the current working directory of the calling

process, as is done by unlink() and rmdir(2) for a relative pathname).

If the pathname given in pathname is relative and dirfd is the special

value AT_FDCWD, then pathname is interpreted relative to the current

working directory of the calling process (like unlink() and rmdir(2)).

If the pathname given in pathname is absolute, then dirfd is ignored.

flags is a bit mask that can either be specified as 0, or by ORing to?

gether flag values that control the operation of unlinkat(). Cur?

rently, only one such flag is defined:

AT_REMOVEDIR
By default, unlinkat() performs the equivalent of unlink() on
pathname. If the AT_REMOVEDIR flag is specified, then performs
the equivalent of rmdir(2) on pathname.

See openat(2) for an explanation of the need for unlinkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is
set appropriately.
ERRORS

EACCES Write access to the directory containing pathname is not allowed
for the process's effective UID, or one of the directories in
pathname did not allow search permission. (See also path_reso?
lution(7).)

EBUSY The file pathname cannot be unlinked because it is being used by

the system or another process; for example, it is a mount point Page 2/4



or the NFS client software created it to represent an active but
otherwise nameless inode ("NFS silly renamed").

EFAULT pathname points outside your accessible address space.

EIO An /O error occurred.

EISDIR pathname refers to a directory. (This is the non-POSIX value

returned by Linux since 2.1.132.)

ELOOP Too many symbolic links were encountered in translating path?

name.
ENAMETOOLONG

pathname was too long.

ENOENT A component in pathname does not exist or is a dangling symbolic

link, or pathname is empty.

ENOMEM Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in pathname is not, in fact, a
directory.

EPERM The system does not allow unlinking of directories, or unlinking
of directories requires privileges that the calling process
doesn't have. (This is the POSIX prescribed error return; as
noted above, Linux returns EISDIR for this case.)

EPERM (Linux only)

The filesystem does not allow unlinking of files.

EPERM or EACCES
The directory containing pathname has the sticky bit (S_ISVTX)
set and the process's effective UID is neither the UID of the
file to be deleted nor that of the directory containing it, and
the process is not privileged (Linux: does not have the

CAP_FOWNER capability).

EPERM The file to be unlinked is marked immutable or append-only.

(See ioctl_iflags(2).)
EROFS pathname refers to a file on a read-only filesystem.
The same errors that occur for unlink() and rmdir(2) can also occur for

unlinkat(). The following additional errors can occur for unlinkat():

Page 3/4



EBADF dirfd is not a valid file descriptor.
EINVAL An invalid flag value was specified in flags.
EISDIR pathname refers to a directory, and AT_REMOVEDIR was not speci?
fied in flags.
ENOTDIR
pathname is relative and dirfd is a file descriptor referring to
a file other than a directory.
VERSIONS
unlinkat() was added to Linux in kernel 2.6.16; library support was
added to glibc in version 2.4.
CONFORMING TO
unlink(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.
unlinkat(): POSIX.1-2008.
NOTES
Glibc notes
On older kernels where unlinkat() is unavailable, the glibc wrapper
function falls back to the use of unlink() or rmdir(2). When pathname
is a relative pathname, glibc constructs a pathname based on the sym?
bolic link in /proc/self/fd that corresponds to the dirfd argument.
BUGS
Infelicities in the protocol underlying NFS can cause the unexpected
disappearance of files which are still being used.
SEE ALSO
rm(1), unlink(1), chmod(2), link(2), mknod(2), open(2), rename(2),
rmdir(2), mkfifo(3), remove(3), path_resolution(7), symlink(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 UNLINK(2)

Page 4/4



