
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'vfork.2' command

$ man vfork.2

VFORK(2) Linux Programmer's Manual VFORK(2)

NAME

 vfork - create a child process and block parent

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 pid_t vfork(void);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 vfork():

 Since glibc 2.12:

 (_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 Before glibc 2.12:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

 Standard description

 (From POSIX.1) The vfork() function has the same effect as fork(2), ex?

 cept that the behavior is undefined if the process created by vfork()

 either modifies any data other than a variable of type pid_t used to

 store the return value from vfork(), or returns from the function in

 which vfork() was called, or calls any other function before success?

 fully calling _exit(2) or one of the exec(3) family of functions. Page 1/5

 Linux description

 vfork(), just like fork(2), creates a child process of the calling

 process. For details and return value and errors, see fork(2).

 vfork() is a special case of clone(2). It is used to create new pro?

 cesses without copying the page tables of the parent process. It may

 be useful in performance-sensitive applications where a child is cre?

 ated which then immediately issues an execve(2).

 vfork() differs from fork(2) in that the calling thread is suspended

 until the child terminates (either normally, by calling _exit(2), or

 abnormally, after delivery of a fatal signal), or it makes a call to

 execve(2). Until that point, the child shares all memory with its par?

 ent, including the stack. The child must not return from the current

 function or call exit(3) (which would have the effect of calling exit

 handlers established by the parent process and flushing the parent's

 stdio(3) buffers), but may call _exit(2).

 As with fork(2), the child process created by vfork() inherits copies

 of various of the caller's process attributes (e.g., file descriptors,

 signal dispositions, and current working directory); the vfork() call

 differs only in the treatment of the virtual address space, as de?

 scribed above.

 Signals sent to the parent arrive after the child releases the parent's

 memory (i.e., after the child terminates or calls execve(2)).

 Historic description

 Under Linux, fork(2) is implemented using copy-on-write pages, so the

 only penalty incurred by fork(2) is the time and memory required to du?

 plicate the parent's page tables, and to create a unique task structure

 for the child. However, in the bad old days a fork(2) would require

 making a complete copy of the caller's data space, often needlessly,

 since usually immediately afterward an exec(3) is done. Thus, for

 greater efficiency, BSD introduced the vfork() system call, which did

 not fully copy the address space of the parent process, but borrowed

 the parent's memory and thread of control until a call to execve(2) or

 an exit occurred. The parent process was suspended while the child was Page 2/5

 using its resources. The use of vfork() was tricky: for example, not

 modifying data in the parent process depended on knowing which vari?

 ables were held in a register.

CONFORMING TO

 4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the

 specification of vfork().

 The requirements put on vfork() by the standards are weaker than those

 put on fork(2), so an implementation where the two are synonymous is

 compliant. In particular, the programmer cannot rely on the parent re?

 maining blocked until the child either terminates or calls execve(2),

 and cannot rely on any specific behavior with respect to shared memory.

NOTES

 Some consider the semantics of vfork() to be an architectural blemish,

 and the 4.2BSD man page stated: "This system call will be eliminated

 when proper system sharing mechanisms are implemented. Users should

 not depend on the memory sharing semantics of vfork() as it will, in

 that case, be made synonymous to fork(2)." However, even though modern

 memory management hardware has decreased the performance difference be?

 tween fork(2) and vfork(), there are various reasons why Linux and

 other systems have retained vfork():

 * Some performance-critical applications require the small performance

 advantage conferred by vfork().

 * vfork() can be implemented on systems that lack a memory-management

 unit (MMU), but fork(2) can't be implemented on such systems.

 (POSIX.1-2008 removed vfork() from the standard; the POSIX rationale

 for the posix_spawn(3) function notes that that function, which pro?

 vides functionality equivalent to fork(2)+exec(3), is designed to be

 implementable on systems that lack an MMU.)

 * On systems where memory is constrained, vfork() avoids the need to

 temporarily commit memory (see the description of /proc/sys/vm/over?

 commit_memory in proc(5)) in order to execute a new program. (This

 can be especially beneficial where a large parent process wishes to

 execute a small helper program in a child process.) By contrast, Page 3/5

 using fork(2) in this scenario requires either committing an amount

 of memory equal to the size of the parent process (if strict over?

 committing is in force) or overcommitting memory with the risk that

 a process is terminated by the out-of-memory (OOM) killer.

 Caveats

 The child process should take care not to modify the memory in unin?

 tended ways, since such changes will be seen by the parent process once

 the child terminates or executes another program. In this regard, sig?

 nal handlers can be especially problematic: if a signal handler that is

 invoked in the child of vfork() changes memory, those changes may re?

 sult in an inconsistent process state from the perspective of the par?

 ent process (e.g., memory changes would be visible in the parent, but

 changes to the state of open file descriptors would not be visible).

 When vfork() is called in a multithreaded process, only the calling

 thread is suspended until the child terminates or executes a new pro?

 gram. This means that the child is sharing an address space with other

 running code. This can be dangerous if another thread in the parent

 process changes credentials (using setuid(2) or similar), since there

 are now two processes with different privilege levels running in the

 same address space. As an example of the dangers, suppose that a mul?

 tithreaded program running as root creates a child using vfork(). Af?

 ter the vfork(), a thread in the parent process drops the process to an

 unprivileged user in order to run some untrusted code (e.g., perhaps

 via plug-in opened with dlopen(3)). In this case, attacks are possible

 where the parent process uses mmap(2) to map in code that will be exe?

 cuted by the privileged child process.

 Linux notes

 Fork handlers established using pthread_atfork(3) are not called when a

 multithreaded program employing the NPTL threading library calls

 vfork(). Fork handlers are called in this case in a program using the

 LinuxThreads threading library. (See pthreads(7) for a description of

 Linux threading libraries.)

 A call to vfork() is equivalent to calling clone(2) with flags speci? Page 4/5

 fied as:

 CLONE_VM | CLONE_VFORK | SIGCHLD

 History

 The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made syn?

 onymous to fork(2) but NetBSD introduced it again; see

 ?http://www.netbsd.org/Documentation/kernel/vfork.html?. In Linux, it

 has been equivalent to fork(2) until 2.2.0-pre6 or so. Since

 2.2.0-pre9 (on i386, somewhat later on other architectures) it is an

 independent system call. Support was added in glibc 2.0.112.

BUGS

 Details of the signal handling are obscure and differ between systems.

 The BSD man page states: "To avoid a possible deadlock situation, pro?

 cesses that are children in the middle of a vfork() are never sent

 SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and

 input attempts result in an end-of-file indication."

SEE ALSO

 clone(2), execve(2), _exit(2), fork(2), unshare(2), wait(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 VFORK(2)

Page 5/5

