r*‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'vfork.2' command

$ man vfork.2

VFORK(2) Linux Programmer's Manual VFORK(2)
NAME
vfork - create a child process and block parent
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t vfork(void);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
vfork():
Since glibc 2.12:
(_ XOPEN_SOURCE >= 500) && ! (_ POSIX_C_SOURCE >= 200809L)
[| 7* Since glibc 2.19: */ DEFAULT_SOURCE
|| 7* Glibc versions <= 2.19: */ _BSD_SOURCE
Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500
DESCRIPTION
Standard description
(From POSIX.1) The vfork() function has the same effect as fork(2), ex?
cept that the behavior is undefined if the process created by vfork()
either modifies any data other than a variable of type pid_t used to
store the return value from vfork(), or returns from the function in
which vfork() was called, or calls any other function before success?

fully calling _exit(2) or one of the exec(3) family of functions. Page 1/5

Linux description
vfork(), just like fork(2), creates a child process of the calling
process. For details and return value and errors, see fork(2).
vfork() is a special case of clone(2). Itis used to create new pro?
cesses without copying the page tables of the parent process. It may
be useful in performance-sensitive applications where a child is cre?
ated which then immediately issues an execve(2).
vfork() differs from fork(2) in that the calling thread is suspended
until the child terminates (either normally, by calling _exit(2), or
abnormally, after delivery of a fatal signal), or it makes a call to
execve(2). Until that point, the child shares all memory with its par?
ent, including the stack. The child must not return from the current
function or call exit(3) (which would have the effect of calling exit
handlers established by the parent process and flushing the parent's
stdio(3) buffers), but may call _exit(2).
As with fork(2), the child process created by vfork() inherits copies
of various of the caller's process attributes (e.g., file descriptors,
signal dispositions, and current working directory); the vfork() call
differs only in the treatment of the virtual address space, as de?
scribed above.
Signals sent to the parent arrive after the child releases the parent's
memory (i.e., after the child terminates or calls execve(2)).

Historic description
Under Linux, fork(2) is implemented using copy-on-write pages, so the
only penalty incurred by fork(2) is the time and memory required to du?
plicate the parent's page tables, and to create a unique task structure
for the child. However, in the bad old days a fork(2) would require
making a complete copy of the caller's data space, often needlessly,
since usually immediately afterward an exec(3) is done. Thus, for
greater efficiency, BSD introduced the vfork() system call, which did
not fully copy the address space of the parent process, but borrowed
the parent's memory and thread of control until a call to execve(2) or

an exit occurred. The parent process was suspended while the child was Page 2/5

using its resources. The use of vfork() was tricky: for example, not

modifying data in the parent process depended on knowing which vari?

ables were held in a register.
CONFORMING TO

4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the

specification of vfork().

The requirements put on vfork() by the standards are weaker than those

put on fork(2), so an implementation where the two are synonymous is

compliant. In particular, the programmer cannot rely on the parent re?
maining blocked until the child either terminates or calls execve(2),

and cannot rely on any specific behavior with respect to shared memory.

NOTES

Some consider the semantics of vfork() to be an architectural blemish,

and the 4.2BSD man page stated: "This system call will be eliminated

when proper system sharing mechanisms are implemented. Users should

not depend on the memory sharing semantics of vfork() as it will, in

that case, be made synonymous to fork(2)." However, even though modern

memory management hardware has decreased the performance difference be?

tween fork(2) and vfork(), there are various reasons why Linux and

other systems have retained vfork():

* Some performance-critical applications require the small performance
advantage conferred by vfork().

* vfork() can be implemented on systems that lack a memory-management
unit (MMU), but fork(2) can't be implemented on such systems.
(POSIX.1-2008 removed vfork() from the standard; the POSIX rationale
for the posix_spawn(3) function notes that that function, which pro?
vides functionality equivalent to fork(2)+exec(3), is designed to be
implementable on systems that lack an MMU.)

* On systems where memory is constrained, vfork() avoids the need to
temporarily commit memory (see the description of /proc/sys/vm/over?
commit_memory in proc(5)) in order to execute a new program. (This
can be especially beneficial where a large parent process wishes to

execute a small helper program in a child process.) By contrast, Page 3/5

using fork(2) in this scenario requires either committing an amount

of memory equal to the size of the parent process (if strict over?

committing is in force) or overcommitting memory with the risk that

a process is terminated by the out-of-memory (OOM) killer.
Caveats

The child process should take care not to modify the memory in unin?

tended ways, since such changes will be seen by the parent process once

the child terminates or executes another program. In this regard, sig?
nal handlers can be especially problematic: if a signal handler that is
invoked in the child of vfork() changes memory, those changes may re?
sult in an inconsistent process state from the perspective of the par?
ent process (e.g., memory changes would be visible in the parent, but
changes to the state of open file descriptors would not be visible).
When vfork() is called in a multithreaded process, only the calling
thread is suspended until the child terminates or executes a new pro?
gram. This means that the child is sharing an address space with other
running code. This can be dangerous if another thread in the parent
process changes credentials (using setuid(2) or similar), since there

are now two processes with different privilege levels running in the

same address space. As an example of the dangers, suppose that a mul?

tithreaded program running as root creates a child using vfork(). Af?
ter the vfork(), a thread in the parent process drops the process to an
unprivileged user in order to run some untrusted code (e.g., perhaps
via plug-in opened with dlopen(3)). In this case, attacks are possible
where the parent process uses mmap(2) to map in code that will be exe?
cuted by the privileged child process.

Linux notes
Fork handlers established using pthread_atfork(3) are not called when a
multithreaded program employing the NPTL threading library calls
vfork(). Fork handlers are called in this case in a program using the
LinuxThreads threading library. (See pthreads(7) for a description of
Linux threading libraries.)

A call to vfork() is equivalent to calling clone(2) with flags speci?

Page 4/5

fied as:
CLONE_VM | CLONE_VFORK | SIGCHLD
History

The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made syn?
onymous to fork(2) but NetBSD introduced it again; see
?http://www.netbsd.org/Documentation/kernel/vfork.html?. In Linux, it
has been equivalent to fork(2) until 2.2.0-pre6 or so. Since
2.2.0-pre9 (on i386, somewhat later on other architectures) it is an
independent system call. Support was added in glibc 2.0.112.

BUGS
Details of the signal handling are obscure and differ between systems.
The BSD man page states: "To avoid a possible deadlock situation, pro?
cesses that are children in the middle of a vfork() are never sent
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and
input attempts result in an end-of-file indication."

SEE ALSO
clone(2), execve(2), _exit(2), fork(2), unshare(2), wait(2)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

Linux 2017-09-15 VFORK(2)

Page 5/5

