
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'xzcat.1' command

$ man xzcat.1

XZ(1) XZ Utils XZ(1)

NAME

 xz, unxz, xzcat, lzma, unlzma, lzcat - Compress or decompress .xz and

 .lzma files

SYNOPSIS

 xz [option...] [file...]

COMMAND ALIASES

 unxz is equivalent to xz --decompress.

 xzcat is equivalent to xz --decompress --stdout.

 lzma is equivalent to xz --format=lzma.

 unlzma is equivalent to xz --format=lzma --decompress.

 lzcat is equivalent to xz --format=lzma --decompress --stdout.

 When writing scripts that need to decompress files, it is recommended

 to always use the name xz with appropriate arguments (xz -d or xz -dc)

 instead of the names unxz and xzcat.

DESCRIPTION

 xz is a general-purpose data compression tool with command line syntax

 similar to gzip(1) and bzip2(1). The native file format is the .xz

 format, but the legacy .lzma format used by LZMA Utils and raw com?

 pressed streams with no container format headers are also supported.

 xz compresses or decompresses each file according to the selected oper?

 ation mode. If no files are given or file is -, xz reads from standard

 input and writes the processed data to standard output. xz will refuse Page 1/37

 (display an error and skip the file) to write compressed data to stan?

 dard output if it is a terminal. Similarly, xz will refuse to read

 compressed data from standard input if it is a terminal.

 Unless --stdout is specified, files other than - are written to a new

 file whose name is derived from the source file name:

 ? When compressing, the suffix of the target file format (.xz or

 .lzma) is appended to the source filename to get the target file?

 name.

 ? When decompressing, the .xz or .lzma suffix is removed from the

 filename to get the target filename. xz also recognizes the suf?

 fixes .txz and .tlz, and replaces them with the .tar suffix.

 If the target file already exists, an error is displayed and the file

 is skipped.

 Unless writing to standard output, xz will display a warning and skip

 the file if any of the following applies:

 ? File is not a regular file. Symbolic links are not followed, and

 thus they are not considered to be regular files.

 ? File has more than one hard link.

 ? File has setuid, setgid, or sticky bit set.

 ? The operation mode is set to compress and the file already has a

 suffix of the target file format (.xz or .txz when compressing to

 the .xz format, and .lzma or .tlz when compressing to the .lzma for?

 mat).

 ? The operation mode is set to decompress and the file doesn't have a

 suffix of any of the supported file formats (.xz, .txz, .lzma, or

 .tlz).

 After successfully compressing or decompressing the file, xz copies the

 owner, group, permissions, access time, and modification time from the

 source file to the target file. If copying the group fails, the per?

 missions are modified so that the target file doesn't become accessible

 to users who didn't have permission to access the source file. xz

 doesn't support copying other metadata like access control lists or ex?

 tended attributes yet. Page 2/37

 Once the target file has been successfully closed, the source file is

 removed unless --keep was specified. The source file is never removed

 if the output is written to standard output.

 Sending SIGINFO or SIGUSR1 to the xz process makes it print progress

 information to standard error. This has only limited use since when

 standard error is a terminal, using --verbose will display an automati?

 cally updating progress indicator.

 Memory usage

 The memory usage of xz varies from a few hundred kilobytes to several

 gigabytes depending on the compression settings. The settings used

 when compressing a file determine the memory requirements of the decom?

 pressor. Typically the decompressor needs 5 % to 20 % of the amount of

 memory that the compressor needed when creating the file. For example,

 decompressing a file created with xz -9 currently requires 65 MiB of

 memory. Still, it is possible to have .xz files that require several

 gigabytes of memory to decompress.

 Especially users of older systems may find the possibility of very

 large memory usage annoying. To prevent uncomfortable surprises, xz

 has a built-in memory usage limiter, which is disabled by default.

 While some operating systems provide ways to limit the memory usage of

 processes, relying on it wasn't deemed to be flexible enough (e.g. us?

 ing ulimit(1) to limit virtual memory tends to cripple mmap(2)).

 The memory usage limiter can be enabled with the command line option

 --memlimit=limit. Often it is more convenient to enable the limiter by

 default by setting the environment variable XZ_DEFAULTS, e.g. XZ_DE?

 FAULTS=--memlimit=150MiB. It is possible to set the limits separately

 for compression and decompression by using --memlimit-compress=limit

 and --memlimit-decompress=limit. Using these two options outside

 XZ_DEFAULTS is rarely useful because a single run of xz cannot do both

 compression and decompression and --memlimit=limit (or -M limit) is

 shorter to type on the command line.

 If the specified memory usage limit is exceeded when decompressing, xz

 will display an error and decompressing the file will fail. If the Page 3/37

 limit is exceeded when compressing, xz will try to scale the settings

 down so that the limit is no longer exceeded (except when using --for?

 mat=raw or --no-adjust). This way the operation won't fail unless the

 limit is very small. The scaling of the settings is done in steps that

 don't match the compression level presets, e.g. if the limit is only

 slightly less than the amount required for xz -9, the settings will be

 scaled down only a little, not all the way down to xz -8.

 Concatenation and padding with .xz files

 It is possible to concatenate .xz files as is. xz will decompress such

 files as if they were a single .xz file.

 It is possible to insert padding between the concatenated parts or af?

 ter the last part. The padding must consist of null bytes and the size

 of the padding must be a multiple of four bytes. This can be useful

 e.g. if the .xz file is stored on a medium that measures file sizes in

 512-byte blocks.

 Concatenation and padding are not allowed with .lzma files or raw

 streams.

OPTIONS

 Integer suffixes and special values

 In most places where an integer argument is expected, an optional suf?

 fix is supported to easily indicate large integers. There must be no

 space between the integer and the suffix.

 KiB Multiply the integer by 1,024 (2^10). Ki, k, kB, K, and KB are

 accepted as synonyms for KiB.

 MiB Multiply the integer by 1,048,576 (2^20). Mi, m, M, and MB are

 accepted as synonyms for MiB.

 GiB Multiply the integer by 1,073,741,824 (2^30). Gi, g, G, and GB

 are accepted as synonyms for GiB.

 The special value max can be used to indicate the maximum integer value

 supported by the option.

 Operation mode

 If multiple operation mode options are given, the last one takes ef?

 fect. Page 4/37

 -z, --compress

 Compress. This is the default operation mode when no operation

 mode option is specified and no other operation mode is implied

 from the command name (for example, unxz implies --decompress).

 -d, --decompress, --uncompress

 Decompress.

 -t, --test

 Test the integrity of compressed files. This option is equiva?

 lent to --decompress --stdout except that the decompressed data

 is discarded instead of being written to standard output. No

 files are created or removed.

 -l, --list

 Print information about compressed files. No uncompressed out?

 put is produced, and no files are created or removed. In list

 mode, the program cannot read the compressed data from standard

 input or from other unseekable sources.

 The default listing shows basic information about files, one

 file per line. To get more detailed information, use also the

 --verbose option. For even more information, use --verbose

 twice, but note that this may be slow, because getting all the

 extra information requires many seeks. The width of verbose

 output exceeds 80 characters, so piping the output to e.g.

 less -S may be convenient if the terminal isn't wide enough.

 The exact output may vary between xz versions and different lo?

 cales. For machine-readable output, --robot --list should be

 used.

 Operation modifiers

 -k, --keep

 Don't delete the input files.

 -f, --force

 This option has several effects:

 ? If the target file already exists, delete it before compress?

 ing or decompressing. Page 5/37

 ? Compress or decompress even if the input is a symbolic link

 to a regular file, has more than one hard link, or has the

 setuid, setgid, or sticky bit set. The setuid, setgid, and

 sticky bits are not copied to the target file.

 ? When used with --decompress --stdout and xz cannot recognize

 the type of the source file, copy the source file as is to

 standard output. This allows xzcat --force to be used like

 cat(1) for files that have not been compressed with xz. Note

 that in future, xz might support new compressed file formats,

 which may make xz decompress more types of files instead of

 copying them as is to standard output. --format=format can

 be used to restrict xz to decompress only a single file for?

 mat.

 -c, --stdout, --to-stdout

 Write the compressed or decompressed data to standard output in?

 stead of a file. This implies --keep.

 --single-stream

 Decompress only the first .xz stream, and silently ignore possi?

 ble remaining input data following the stream. Normally such

 trailing garbage makes xz display an error.

 xz never decompresses more than one stream from .lzma files or

 raw streams, but this option still makes xz ignore the possible

 trailing data after the .lzma file or raw stream.

 This option has no effect if the operation mode is not --decom?

 press or --test.

 --no-sparse

 Disable creation of sparse files. By default, if decompressing

 into a regular file, xz tries to make the file sparse if the de?

 compressed data contains long sequences of binary zeros. It

 also works when writing to standard output as long as standard

 output is connected to a regular file and certain additional

 conditions are met to make it safe. Creating sparse files may

 save disk space and speed up the decompression by reducing the Page 6/37

 amount of disk I/O.

 -S .suf, --suffix=.suf

 When compressing, use .suf as the suffix for the target file in?

 stead of .xz or .lzma. If not writing to standard output and

 the source file already has the suffix .suf, a warning is dis?

 played and the file is skipped.

 When decompressing, recognize files with the suffix .suf in ad?

 dition to files with the .xz, .txz, .lzma, or .tlz suffix. If

 the source file has the suffix .suf, the suffix is removed to

 get the target filename.

 When compressing or decompressing raw streams (--format=raw),

 the suffix must always be specified unless writing to standard

 output, because there is no default suffix for raw streams.

 --files[=file]

 Read the filenames to process from file; if file is omitted,

 filenames are read from standard input. Filenames must be ter?

 minated with the newline character. A dash (-) is taken as a

 regular filename; it doesn't mean standard input. If filenames

 are given also as command line arguments, they are processed be?

 fore the filenames read from file.

 --files0[=file]

 This is identical to --files[=file] except that each filename

 must be terminated with the null character.

 Basic file format and compression options

 -F format, --format=format

 Specify the file format to compress or decompress:

 auto This is the default. When compressing, auto is equiva?

 lent to xz. When decompressing, the format of the input

 file is automatically detected. Note that raw streams

 (created with --format=raw) cannot be auto-detected.

 xz Compress to the .xz file format, or accept only .xz files

 when decompressing.

 lzma, alone Page 7/37

 Compress to the legacy .lzma file format, or accept only

 .lzma files when decompressing. The alternative name

 alone is provided for backwards compatibility with LZMA

 Utils.

 raw Compress or uncompress a raw stream (no headers). This

 is meant for advanced users only. To decode raw streams,

 you need use --format=raw and explicitly specify the fil?

 ter chain, which normally would have been stored in the

 container headers.

 -C check, --check=check

 Specify the type of the integrity check. The check is calcu?

 lated from the uncompressed data and stored in the .xz file.

 This option has an effect only when compressing into the .xz

 format; the .lzma format doesn't support integrity checks. The

 integrity check (if any) is verified when the .xz file is decom?

 pressed.

 Supported check types:

 none Don't calculate an integrity check at all. This is usu?

 ally a bad idea. This can be useful when integrity of

 the data is verified by other means anyway.

 crc32 Calculate CRC32 using the polynomial from IEEE-802.3

 (Ethernet).

 crc64 Calculate CRC64 using the polynomial from ECMA-182. This

 is the default, since it is slightly better than CRC32 at

 detecting damaged files and the speed difference is neg?

 ligible.

 sha256 Calculate SHA-256. This is somewhat slower than CRC32

 and CRC64.

 Integrity of the .xz headers is always verified with CRC32. It

 is not possible to change or disable it.

 --ignore-check

 Don't verify the integrity check of the compressed data when de?

 compressing. The CRC32 values in the .xz headers will still be Page 8/37

 verified normally.

 Do not use this option unless you know what you are doing. Pos?

 sible reasons to use this option:

 ? Trying to recover data from a corrupt .xz file.

 ? Speeding up decompression. This matters mostly with SHA-256

 or with files that have compressed extremely well. It's rec?

 ommended to not use this option for this purpose unless the

 file integrity is verified externally in some other way.

 -0 ... -9

 Select a compression preset level. The default is -6. If mul?

 tiple preset levels are specified, the last one takes effect.

 If a custom filter chain was already specified, setting a com?

 pression preset level clears the custom filter chain.

 The differences between the presets are more significant than

 with gzip(1) and bzip2(1). The selected compression settings

 determine the memory requirements of the decompressor, thus us?

 ing a too high preset level might make it painful to decompress

 the file on an old system with little RAM. Specifically, it's

 not a good idea to blindly use -9 for everything like it often

 is with gzip(1) and bzip2(1).

 -0 ... -3

 These are somewhat fast presets. -0 is sometimes faster

 than gzip -9 while compressing much better. The higher

 ones often have speed comparable to bzip2(1) with compa?

 rable or better compression ratio, although the results

 depend a lot on the type of data being compressed.

 -4 ... -6

 Good to very good compression while keeping decompressor

 memory usage reasonable even for old systems. -6 is the

 default, which is usually a good choice e.g. for dis?

 tributing files that need to be decompressible even on

 systems with only 16 MiB RAM. (-5e or -6e may be worth

 considering too. See --extreme.) Page 9/37

 -7 ... -9

 These are like -6 but with higher compressor and decom?

 pressor memory requirements. These are useful only when

 compressing files bigger than 8 MiB, 16 MiB, and 32 MiB,

 respectively.

 On the same hardware, the decompression speed is approximately a

 constant number of bytes of compressed data per second. In

 other words, the better the compression, the faster the decom?

 pression will usually be. This also means that the amount of

 uncompressed output produced per second can vary a lot.

 The following table summarises the features of the presets:

 Preset DictSize CompCPU CompMem DecMem

 -0 256 KiB 0 3 MiB 1 MiB

 -1 1 MiB 1 9 MiB 2 MiB

 -2 2 MiB 2 17 MiB 3 MiB

 -3 4 MiB 3 32 MiB 5 MiB

 -4 4 MiB 4 48 MiB 5 MiB

 -5 8 MiB 5 94 MiB 9 MiB

 -6 8 MiB 6 94 MiB 9 MiB

 -7 16 MiB 6 186 MiB 17 MiB

 -8 32 MiB 6 370 MiB 33 MiB

 -9 64 MiB 6 674 MiB 65 MiB

 Column descriptions:

 ? DictSize is the LZMA2 dictionary size. It is waste of memory

 to use a dictionary bigger than the size of the uncompressed

 file. This is why it is good to avoid using the presets -7

 ... -9 when there's no real need for them. At -6 and lower,

 the amount of memory wasted is usually low enough to not mat?

 ter.

 ? CompCPU is a simplified representation of the LZMA2 settings

 that affect compression speed. The dictionary size affects

 speed too, so while CompCPU is the same for levels -6 ... -9,

 higher levels still tend to be a little slower. To get even Page 10/37

 slower and thus possibly better compression, see --extreme.

 ? CompMem contains the compressor memory requirements in the

 single-threaded mode. It may vary slightly between xz ver?

 sions. Memory requirements of some of the future multi?

 threaded modes may be dramatically higher than that of the

 single-threaded mode.

 ? DecMem contains the decompressor memory requirements. That

 is, the compression settings determine the memory require?

 ments of the decompressor. The exact decompressor memory us?

 age is slightly more than the LZMA2 dictionary size, but the

 values in the table have been rounded up to the next full

 MiB.

 -e, --extreme

 Use a slower variant of the selected compression preset level

 (-0 ... -9) to hopefully get a little bit better compression ra?

 tio, but with bad luck this can also make it worse. Decompres?

 sor memory usage is not affected, but compressor memory usage

 increases a little at preset levels -0 ... -3.

 Since there are two presets with dictionary sizes 4 MiB and

 8 MiB, the presets -3e and -5e use slightly faster settings

 (lower CompCPU) than -4e and -6e, respectively. That way no two

 presets are identical.

 Preset DictSize CompCPU CompMem DecMem

 -0e 256 KiB 8 4 MiB 1 MiB

 -1e 1 MiB 8 13 MiB 2 MiB

 -2e 2 MiB 8 25 MiB 3 MiB

 -3e 4 MiB 7 48 MiB 5 MiB

 -4e 4 MiB 8 48 MiB 5 MiB

 -5e 8 MiB 7 94 MiB 9 MiB

 -6e 8 MiB 8 94 MiB 9 MiB

 -7e 16 MiB 8 186 MiB 17 MiB

 -8e 32 MiB 8 370 MiB 33 MiB

 -9e 64 MiB 8 674 MiB 65 MiB Page 11/37

 For example, there are a total of four presets that use 8 MiB

 dictionary, whose order from the fastest to the slowest is -5,

 -6, -5e, and -6e.

 --fast

 --best These are somewhat misleading aliases for -0 and -9, respec?

 tively. These are provided only for backwards compatibility

 with LZMA Utils. Avoid using these options.

 --block-size=size

 When compressing to the .xz format, split the input data into

 blocks of size bytes. The blocks are compressed independently

 from each other, which helps with multi-threading and makes lim?

 ited random-access decompression possible. This option is typi?

 cally used to override the default block size in multi-threaded

 mode, but this option can be used in single-threaded mode too.

 In multi-threaded mode about three times size bytes will be al?

 located in each thread for buffering input and output. The de?

 fault size is three times the LZMA2 dictionary size or 1 MiB,

 whichever is more. Typically a good value is 2-4 times the size

 of the LZMA2 dictionary or at least 1 MiB. Using size less than

 the LZMA2 dictionary size is waste of RAM because then the LZMA2

 dictionary buffer will never get fully used. The sizes of the

 blocks are stored in the block headers, which a future version

 of xz will use for multi-threaded decompression.

 In single-threaded mode no block splitting is done by default.

 Setting this option doesn't affect memory usage. No size infor?

 mation is stored in block headers, thus files created in single-

 threaded mode won't be identical to files created in multi-

 threaded mode. The lack of size information also means that a

 future version of xz won't be able decompress the files in

 multi-threaded mode.

 --block-list=sizes

 When compressing to the .xz format, start a new block after the

 given intervals of uncompressed data. Page 12/37

 The uncompressed sizes of the blocks are specified as a comma-

 separated list. Omitting a size (two or more consecutive com?

 mas) is a shorthand to use the size of the previous block.

 If the input file is bigger than the sum of sizes, the last

 value in sizes is repeated until the end of the file. A special

 value of 0 may be used as the last value to indicate that the

 rest of the file should be encoded as a single block.

 If one specifies sizes that exceed the encoder's block size (ei?

 ther the default value in threaded mode or the value specified

 with --block-size=size), the encoder will create additional

 blocks while keeping the boundaries specified in sizes. For ex?

 ample, if one specifies --block-size=10MiB

 --block-list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is

 80 MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10,

 10, and 1 MiB.

 In multi-threaded mode the sizes of the blocks are stored in the

 block headers. This isn't done in single-threaded mode, so the

 encoded output won't be identical to that of the multi-threaded

 mode.

 --flush-timeout=timeout

 When compressing, if more than timeout milliseconds (a positive

 integer) has passed since the previous flush and reading more

 input would block, all the pending input data is flushed from

 the encoder and made available in the output stream. This can

 be useful if xz is used to compress data that is streamed over a

 network. Small timeout values make the data available at the

 receiving end with a small delay, but large timeout values give

 better compression ratio.

 This feature is disabled by default. If this option is speci?

 fied more than once, the last one takes effect. The special

 timeout value of 0 can be used to explicitly disable this fea?

 ture.

 This feature is not available on non-POSIX systems. Page 13/37

 This feature is still experimental. Currently xz is unsuitable

 for decompressing the stream in real time due to how xz does

 buffering.

 --memlimit-compress=limit

 Set a memory usage limit for compression. If this option is

 specified multiple times, the last one takes effect.

 If the compression settings exceed the limit, xz will adjust the

 settings downwards so that the limit is no longer exceeded and

 display a notice that automatic adjustment was done. Such ad?

 justments are not made when compressing with --format=raw or if

 --no-adjust has been specified. In those cases, an error is

 displayed and xz will exit with exit status 1.

 The limit can be specified in multiple ways:

 ? The limit can be an absolute value in bytes. Using an inte?

 ger suffix like MiB can be useful. Example: --memlimit-com?

 press=80MiB

 ? The limit can be specified as a percentage of total physical

 memory (RAM). This can be useful especially when setting the

 XZ_DEFAULTS environment variable in a shell initialization

 script that is shared between different computers. That way

 the limit is automatically bigger on systems with more mem?

 ory. Example: --memlimit-compress=70%

 ? The limit can be reset back to its default value by setting

 it to 0. This is currently equivalent to setting the limit

 to max (no memory usage limit). Once multithreading support

 has been implemented, there may be a difference between 0 and

 max for the multithreaded case, so it is recommended to use 0

 instead of max until the details have been decided.

 For 32-bit xz there is a special case: if the limit would be

 over 4020 MiB, the limit is set to 4020 MiB. (The values 0 and

 max aren't affected by this. A similar feature doesn't exist

 for decompression.) This can be helpful when a 32-bit exe?

 cutable has access to 4 GiB address space while hopefully doing Page 14/37

 no harm in other situations.

 See also the section Memory usage.

 --memlimit-decompress=limit

 Set a memory usage limit for decompression. This also affects

 the --list mode. If the operation is not possible without ex?

 ceeding the limit, xz will display an error and decompressing

 the file will fail. See --memlimit-compress=limit for possible

 ways to specify the limit.

 -M limit, --memlimit=limit, --memory=limit

 This is equivalent to specifying --memlimit-compress=limit

 --memlimit-decompress=limit.

 --no-adjust

 Display an error and exit if the compression settings exceed the

 memory usage limit. The default is to adjust the settings down?

 wards so that the memory usage limit is not exceeded. Automatic

 adjusting is always disabled when creating raw streams (--for?

 mat=raw).

 -T threads, --threads=threads

 Specify the number of worker threads to use. Setting threads to

 a special value 0 makes xz use as many threads as there are CPU

 cores on the system. The actual number of threads can be less

 than threads if the input file is not big enough for threading

 with the given settings or if using more threads would exceed

 the memory usage limit.

 Currently the only threading method is to split the input into

 blocks and compress them independently from each other. The de?

 fault block size depends on the compression level and can be

 overridden with the --block-size=size option.

 Threaded decompression hasn't been implemented yet. It will

 only work on files that contain multiple blocks with size infor?

 mation in block headers. All files compressed in multi-threaded

 mode meet this condition, but files compressed in single-

 threaded mode don't even if --block-size=size is used. Page 15/37

 Custom compressor filter chains

 A custom filter chain allows specifying the compression settings in de?

 tail instead of relying on the settings associated to the presets.

 When a custom filter chain is specified, preset options (-0 ... -9 and

 --extreme) earlier on the command line are forgotten. If a preset op?

 tion is specified after one or more custom filter chain options, the

 new preset takes effect and the custom filter chain options specified

 earlier are forgotten.

 A filter chain is comparable to piping on the command line. When com?

 pressing, the uncompressed input goes to the first filter, whose output

 goes to the next filter (if any). The output of the last filter gets

 written to the compressed file. The maximum number of filters in the

 chain is four, but typically a filter chain has only one or two fil?

 ters.

 Many filters have limitations on where they can be in the filter chain:

 some filters can work only as the last filter in the chain, some only

 as a non-last filter, and some work in any position in the chain. De?

 pending on the filter, this limitation is either inherent to the filter

 design or exists to prevent security issues.

 A custom filter chain is specified by using one or more filter options

 in the order they are wanted in the filter chain. That is, the order

 of filter options is significant! When decoding raw streams (--for?

 mat=raw), the filter chain is specified in the same order as it was

 specified when compressing.

 Filters take filter-specific options as a comma-separated list. Extra

 commas in options are ignored. Every option has a default value, so

 you need to specify only those you want to change.

 To see the whole filter chain and options, use xz -vv (that is, use

 --verbose twice). This works also for viewing the filter chain options

 used by presets.

 --lzma1[=options]

 --lzma2[=options]

 Add LZMA1 or LZMA2 filter to the filter chain. These filters Page 16/37

 can be used only as the last filter in the chain.

 LZMA1 is a legacy filter, which is supported almost solely due

 to the legacy .lzma file format, which supports only LZMA1.

 LZMA2 is an updated version of LZMA1 to fix some practical is?

 sues of LZMA1. The .xz format uses LZMA2 and doesn't support

 LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA2

 are practically the same.

 LZMA1 and LZMA2 share the same set of options:

 preset=preset

 Reset all LZMA1 or LZMA2 options to preset. Preset con?

 sist of an integer, which may be followed by single-let?

 ter preset modifiers. The integer can be from 0 to 9,

 matching the command line options -0 ... -9. The only

 supported modifier is currently e, which matches --ex?

 treme. If no preset is specified, the default values of

 LZMA1 or LZMA2 options are taken from the preset 6.

 dict=size

 Dictionary (history buffer) size indicates how many bytes

 of the recently processed uncompressed data is kept in

 memory. The algorithm tries to find repeating byte se?

 quences (matches) in the uncompressed data, and replace

 them with references to the data currently in the dictio?

 nary. The bigger the dictionary, the higher is the

 chance to find a match. Thus, increasing dictionary size

 usually improves compression ratio, but a dictionary big?

 ger than the uncompressed file is waste of memory.

 Typical dictionary size is from 64 KiB to 64 MiB. The

 minimum is 4 KiB. The maximum for compression is cur?

 rently 1.5 GiB (1536 MiB). The decompressor already sup?

 ports dictionaries up to one byte less than 4 GiB, which

 is the maximum for the LZMA1 and LZMA2 stream formats.

 Dictionary size and match finder (mf) together determine

 the memory usage of the LZMA1 or LZMA2 encoder. The same Page 17/37

 (or bigger) dictionary size is required for decompressing

 that was used when compressing, thus the memory usage of

 the decoder is determined by the dictionary size used

 when compressing. The .xz headers store the dictionary

 size either as 2^n or 2^n + 2^(n-1), so these sizes are

 somewhat preferred for compression. Other sizes will get

 rounded up when stored in the .xz headers.

 lc=lc Specify the number of literal context bits. The minimum

 is 0 and the maximum is 4; the default is 3. In addi?

 tion, the sum of lc and lp must not exceed 4.

 All bytes that cannot be encoded as matches are encoded

 as literals. That is, literals are simply 8-bit bytes

 that are encoded one at a time.

 The literal coding makes an assumption that the highest

 lc bits of the previous uncompressed byte correlate with

 the next byte. E.g. in typical English text, an upper-

 case letter is often followed by a lower-case letter, and

 a lower-case letter is usually followed by another lower-

 case letter. In the US-ASCII character set, the highest

 three bits are 010 for upper-case letters and 011 for

 lower-case letters. When lc is at least 3, the literal

 coding can take advantage of this property in the uncom?

 pressed data.

 The default value (3) is usually good. If you want maxi?

 mum compression, test lc=4. Sometimes it helps a little,

 and sometimes it makes compression worse. If it makes it

 worse, test e.g. lc=2 too.

 lp=lp Specify the number of literal position bits. The minimum

 is 0 and the maximum is 4; the default is 0.

 Lp affects what kind of alignment in the uncompressed

 data is assumed when encoding literals. See pb below for

 more information about alignment.

 pb=pb Specify the number of position bits. The minimum is 0 Page 18/37

 and the maximum is 4; the default is 2.

 Pb affects what kind of alignment in the uncompressed

 data is assumed in general. The default means four-byte

 alignment (2^pb=2^2=4), which is often a good choice when

 there's no better guess.

 When the aligment is known, setting pb accordingly may

 reduce the file size a little. E.g. with text files hav?

 ing one-byte alignment (US-ASCII, ISO-8859-*, UTF-8),

 setting pb=0 can improve compression slightly. For

 UTF-16 text, pb=1 is a good choice. If the alignment is

 an odd number like 3 bytes, pb=0 might be the best

 choice.

 Even though the assumed alignment can be adjusted with pb

 and lp, LZMA1 and LZMA2 still slightly favor 16-byte

 alignment. It might be worth taking into account when

 designing file formats that are likely to be often com?

 pressed with LZMA1 or LZMA2.

 mf=mf Match finder has a major effect on encoder speed, memory

 usage, and compression ratio. Usually Hash Chain match

 finders are faster than Binary Tree match finders. The

 default depends on the preset: 0 uses hc3, 1-3 use hc4,

 and the rest use bt4.

 The following match finders are supported. The memory

 usage formulas below are rough approximations, which are

 closest to the reality when dict is a power of two.

 hc3 Hash Chain with 2- and 3-byte hashing

 Minimum value for nice: 3

 Memory usage:

 dict * 7.5 (if dict <= 16 MiB);

 dict * 5.5 + 64 MiB (if dict > 16 MiB)

 hc4 Hash Chain with 2-, 3-, and 4-byte hashing

 Minimum value for nice: 4

 Memory usage: Page 19/37

 dict * 7.5 (if dict <= 32 MiB);

 dict * 6.5 (if dict > 32 MiB)

 bt2 Binary Tree with 2-byte hashing

 Minimum value for nice: 2

 Memory usage: dict * 9.5

 bt3 Binary Tree with 2- and 3-byte hashing

 Minimum value for nice: 3

 Memory usage:

 dict * 11.5 (if dict <= 16 MiB);

 dict * 9.5 + 64 MiB (if dict > 16 MiB)

 bt4 Binary Tree with 2-, 3-, and 4-byte hashing

 Minimum value for nice: 4

 Memory usage:

 dict * 11.5 (if dict <= 32 MiB);

 dict * 10.5 (if dict > 32 MiB)

 mode=mode

 Compression mode specifies the method to analyze the data

 produced by the match finder. Supported modes are fast

 and normal. The default is fast for presets 0-3 and nor?

 mal for presets 4-9.

 Usually fast is used with Hash Chain match finders and

 normal with Binary Tree match finders. This is also what

 the presets do.

 nice=nice

 Specify what is considered to be a nice length for a

 match. Once a match of at least nice bytes is found, the

 algorithm stops looking for possibly better matches.

 Nice can be 2-273 bytes. Higher values tend to give bet?

 ter compression ratio at the expense of speed. The de?

 fault depends on the preset.

 depth=depth

 Specify the maximum search depth in the match finder.

 The default is the special value of 0, which makes the Page 20/37

 compressor determine a reasonable depth from mf and nice.

 Reasonable depth for Hash Chains is 4-100 and 16-1000 for

 Binary Trees. Using very high values for depth can make

 the encoder extremely slow with some files. Avoid set?

 ting the depth over 1000 unless you are prepared to in?

 terrupt the compression in case it is taking far too

 long.

 When decoding raw streams (--format=raw), LZMA2 needs only the

 dictionary size. LZMA1 needs also lc, lp, and pb.

 --x86[=options]

 --powerpc[=options]

 --ia64[=options]

 --arm[=options]

 --armthumb[=options]

 --sparc[=options]

 Add a branch/call/jump (BCJ) filter to the filter chain. These

 filters can be used only as a non-last filter in the filter

 chain.

 A BCJ filter converts relative addresses in the machine code to

 their absolute counterparts. This doesn't change the size of

 the data, but it increases redundancy, which can help LZMA2 to

 produce 0-15 % smaller .xz file. The BCJ filters are always re?

 versible, so using a BCJ filter for wrong type of data doesn't

 cause any data loss, although it may make the compression ratio

 slightly worse.

 It is fine to apply a BCJ filter on a whole executable; there's

 no need to apply it only on the executable section. Applying a

 BCJ filter on an archive that contains both executable and non-

 executable files may or may not give good results, so it gener?

 ally isn't good to blindly apply a BCJ filter when compressing

 binary packages for distribution.

 These BCJ filters are very fast and use insignificant amount of

 memory. If a BCJ filter improves compression ratio of a file, Page 21/37

 it can improve decompression speed at the same time. This is

 because, on the same hardware, the decompression speed of LZMA2

 is roughly a fixed number of bytes of compressed data per sec?

 ond.

 These BCJ filters have known problems related to the compression

 ratio:

 ? Some types of files containing executable code (e.g. object

 files, static libraries, and Linux kernel modules) have the

 addresses in the instructions filled with filler values.

 These BCJ filters will still do the address conversion, which

 will make the compression worse with these files.

 ? Applying a BCJ filter on an archive containing multiple simi?

 lar executables can make the compression ratio worse than not

 using a BCJ filter. This is because the BCJ filter doesn't

 detect the boundaries of the executable files, and doesn't

 reset the address conversion counter for each executable.

 Both of the above problems will be fixed in the future in a new

 filter. The old BCJ filters will still be useful in embedded

 systems, because the decoder of the new filter will be bigger

 and use more memory.

 Different instruction sets have different alignment:

 Filter Alignment Notes

 x86 1 32-bit or 64-bit x86

 PowerPC 4 Big endian only

 ARM 4 Little endian only

 ARM-Thumb 2 Little endian only

 IA-64 16 Big or little endian

 SPARC 4 Big or little endian

 Since the BCJ-filtered data is usually compressed with LZMA2,

 the compression ratio may be improved slightly if the LZMA2 op?

 tions are set to match the alignment of the selected BCJ filter.

 For example, with the IA-64 filter, it's good to set pb=4 with

 LZMA2 (2^4=16). The x86 filter is an exception; it's usually Page 22/37

 good to stick to LZMA2's default four-byte alignment when com?

 pressing x86 executables.

 All BCJ filters support the same options:

 start=offset

 Specify the start offset that is used when converting be?

 tween relative and absolute addresses. The offset must

 be a multiple of the alignment of the filter (see the ta?

 ble above). The default is zero. In practice, the de?

 fault is good; specifying a custom offset is almost never

 useful.

 --delta[=options]

 Add the Delta filter to the filter chain. The Delta filter can

 be only used as a non-last filter in the filter chain.

 Currently only simple byte-wise delta calculation is supported.

 It can be useful when compressing e.g. uncompressed bitmap im?

 ages or uncompressed PCM audio. However, special purpose algo?

 rithms may give significantly better results than Delta + LZMA2.

 This is true especially with audio, which compresses faster and

 better e.g. with flac(1).

 Supported options:

 dist=distance

 Specify the distance of the delta calculation in bytes.

 distance must be 1-256. The default is 1.

 For example, with dist=2 and eight-byte input A1 B1 A2 B3

 A3 B5 A4 B7, the output will be A1 B1 01 02 01 02 01 02.

 Other options

 -q, --quiet

 Suppress warnings and notices. Specify this twice to suppress

 errors too. This option has no effect on the exit status. That

 is, even if a warning was suppressed, the exit status to indi?

 cate a warning is still used.

 -v, --verbose

 Be verbose. If standard error is connected to a terminal, xz Page 23/37

 will display a progress indicator. Specifying --verbose twice

 will give even more verbose output.

 The progress indicator shows the following information:

 ? Completion percentage is shown if the size of the input file

 is known. That is, the percentage cannot be shown in pipes.

 ? Amount of compressed data produced (compressing) or consumed

 (decompressing).

 ? Amount of uncompressed data consumed (compressing) or pro?

 duced (decompressing).

 ? Compression ratio, which is calculated by dividing the amount

 of compressed data processed so far by the amount of uncom?

 pressed data processed so far.

 ? Compression or decompression speed. This is measured as the

 amount of uncompressed data consumed (compression) or pro?

 duced (decompression) per second. It is shown after a few

 seconds have passed since xz started processing the file.

 ? Elapsed time in the format M:SS or H:MM:SS.

 ? Estimated remaining time is shown only when the size of the

 input file is known and a couple of seconds have already

 passed since xz started processing the file. The time is

 shown in a less precise format which never has any colons,

 e.g. 2 min 30 s.

 When standard error is not a terminal, --verbose will make xz

 print the filename, compressed size, uncompressed size, compres?

 sion ratio, and possibly also the speed and elapsed time on a

 single line to standard error after compressing or decompressing

 the file. The speed and elapsed time are included only when the

 operation took at least a few seconds. If the operation didn't

 finish, e.g. due to user interruption, also the completion per?

 centage is printed if the size of the input file is known.

 -Q, --no-warn

 Don't set the exit status to 2 even if a condition worth a warn?

 ing was detected. This option doesn't affect the verbosity Page 24/37

 level, thus both --quiet and --no-warn have to be used to not

 display warnings and to not alter the exit status.

 --robot

 Print messages in a machine-parsable format. This is intended

 to ease writing frontends that want to use xz instead of li?

 blzma, which may be the case with various scripts. The output

 with this option enabled is meant to be stable across xz re?

 leases. See the section ROBOT MODE for details.

 --info-memory

 Display, in human-readable format, how much physical memory

 (RAM) xz thinks the system has and the memory usage limits for

 compression and decompression, and exit successfully.

 -h, --help

 Display a help message describing the most commonly used op?

 tions, and exit successfully.

 -H, --long-help

 Display a help message describing all features of xz, and exit

 successfully

 -V, --version

 Display the version number of xz and liblzma in human readable

 format. To get machine-parsable output, specify --robot before

 --version.

ROBOT MODE

 The robot mode is activated with the --robot option. It makes the out?

 put of xz easier to parse by other programs. Currently --robot is sup?

 ported only together with --version, --info-memory, and --list. It

 will be supported for compression and decompression in the future.

 Version

 xz --robot --version will print the version number of xz and liblzma in

 the following format:

 XZ_VERSION=XYYYZZZS

 LIBLZMA_VERSION=XYYYZZZS

 X Major version. Page 25/37

 YYY Minor version. Even numbers are stable. Odd numbers are alpha

 or beta versions.

 ZZZ Patch level for stable releases or just a counter for develop?

 ment releases.

 S Stability. 0 is alpha, 1 is beta, and 2 is stable. S should be

 always 2 when YYY is even.

 XYYYZZZS are the same on both lines if xz and liblzma are from the same

 XZ Utils release.

 Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

 Memory limit information

 xz --robot --info-memory prints a single line with three tab-separated

 columns:

 1. Total amount of physical memory (RAM) in bytes

 2. Memory usage limit for compression in bytes. A special value of

 zero indicates the default setting, which for single-threaded mode

 is the same as no limit.

 3. Memory usage limit for decompression in bytes. A special value of

 zero indicates the default setting, which for single-threaded mode

 is the same as no limit.

 In the future, the output of xz --robot --info-memory may have more

 columns, but never more than a single line.

 List mode

 xz --robot --list uses tab-separated output. The first column of every

 line has a string that indicates the type of the information found on

 that line:

 name This is always the first line when starting to list a file. The

 second column on the line is the filename.

 file This line contains overall information about the .xz file. This

 line is always printed after the name line.

 stream This line type is used only when --verbose was specified. There

 are as many stream lines as there are streams in the .xz file.

 block This line type is used only when --verbose was specified. There

 are as many block lines as there are blocks in the .xz file. Page 26/37

 The block lines are shown after all the stream lines; different

 line types are not interleaved.

 summary

 This line type is used only when --verbose was specified twice.

 This line is printed after all block lines. Like the file line,

 the summary line contains overall information about the .xz

 file.

 totals This line is always the very last line of the list output. It

 shows the total counts and sizes.

 The columns of the file lines:

 2. Number of streams in the file

 3. Total number of blocks in the stream(s)

 4. Compressed size of the file

 5. Uncompressed size of the file

 6. Compression ratio, for example 0.123. If ratio is over

 9.999, three dashes (---) are displayed instead of the ra?

 tio.

 7. Comma-separated list of integrity check names. The follow?

 ing strings are used for the known check types: None, CRC32,

 CRC64, and SHA-256. For unknown check types, Unknown-N is

 used, where N is the Check ID as a decimal number (one or

 two digits).

 8. Total size of stream padding in the file

 The columns of the stream lines:

 2. Stream number (the first stream is 1)

 3. Number of blocks in the stream

 4. Compressed start offset

 5. Uncompressed start offset

 6. Compressed size (does not include stream padding)

 7. Uncompressed size

 8. Compression ratio

 9. Name of the integrity check

 10. Size of stream padding Page 27/37

 The columns of the block lines:

 2. Number of the stream containing this block

 3. Block number relative to the beginning of the stream (the

 first block is 1)

 4. Block number relative to the beginning of the file

 5. Compressed start offset relative to the beginning of the

 file

 6. Uncompressed start offset relative to the beginning of the

 file

 7. Total compressed size of the block (includes headers)

 8. Uncompressed size

 9. Compression ratio

 10. Name of the integrity check

 If --verbose was specified twice, additional columns are included on

 the block lines. These are not displayed with a single --verbose, be?

 cause getting this information requires many seeks and can thus be

 slow:

 11. Value of the integrity check in hexadecimal

 12. Block header size

 13. Block flags: c indicates that compressed size is present,

 and u indicates that uncompressed size is present. If the

 flag is not set, a dash (-) is shown instead to keep the

 string length fixed. New flags may be added to the end of

 the string in the future.

 14. Size of the actual compressed data in the block (this ex?

 cludes the block header, block padding, and check fields)

 15. Amount of memory (in bytes) required to decompress this

 block with this xz version

 16. Filter chain. Note that most of the options used at com?

 pression time cannot be known, because only the options that

 are needed for decompression are stored in the .xz headers.

 The columns of the summary lines:

 2. Amount of memory (in bytes) required to decompress this file Page 28/37

 with this xz version

 3. yes or no indicating if all block headers have both com?

 pressed size and uncompressed size stored in them

 Since xz 5.1.2alpha:

 4. Minimum xz version required to decompress the file

 The columns of the totals line:

 2. Number of streams

 3. Number of blocks

 4. Compressed size

 5. Uncompressed size

 6. Average compression ratio

 7. Comma-separated list of integrity check names that were

 present in the files

 8. Stream padding size

 9. Number of files. This is here to keep the order of the ear?

 lier columns the same as on file lines.

 If --verbose was specified twice, additional columns are included on

 the totals line:

 10. Maximum amount of memory (in bytes) required to decompress

 the files with this xz version

 11. yes or no indicating if all block headers have both com?

 pressed size and uncompressed size stored in them

 Since xz 5.1.2alpha:

 12. Minimum xz version required to decompress the file

 Future versions may add new line types and new columns can be added to

 the existing line types, but the existing columns won't be changed.

EXIT STATUS

 0 All is good.

 1 An error occurred.

 2 Something worth a warning occurred, but no actual errors oc?

 curred.

 Notices (not warnings or errors) printed on standard error don't affect

 the exit status. Page 29/37

ENVIRONMENT

 xz parses space-separated lists of options from the environment vari?

 ables XZ_DEFAULTS and XZ_OPT, in this order, before parsing the options

 from the command line. Note that only options are parsed from the en?

 vironment variables; all non-options are silently ignored. Parsing is

 done with getopt_long(3) which is used also for the command line argu?

 ments.

 XZ_DEFAULTS

 User-specific or system-wide default options. Typically this is

 set in a shell initialization script to enable xz's memory usage

 limiter by default. Excluding shell initialization scripts and

 similar special cases, scripts must never set or unset XZ_DE?

 FAULTS.

 XZ_OPT This is for passing options to xz when it is not possible to set

 the options directly on the xz command line. This is the case

 e.g. when xz is run by a script or tool, e.g. GNU tar(1):

 XZ_OPT=-2v tar caf foo.tar.xz foo

 Scripts may use XZ_OPT e.g. to set script-specific default com?

 pression options. It is still recommended to allow users to

 override XZ_OPT if that is reasonable, e.g. in sh(1) scripts one

 may use something like this:

 XZ_OPT=${XZ_OPT-"-7e"}

 export XZ_OPT

LZMA UTILS COMPATIBILITY

 The command line syntax of xz is practically a superset of lzma, un?

 lzma, and lzcat as found from LZMA Utils 4.32.x. In most cases, it is

 possible to replace LZMA Utils with XZ Utils without breaking existing

 scripts. There are some incompatibilities though, which may sometimes

 cause problems.

 Compression preset levels

 The numbering of the compression level presets is not identical in xz

 and LZMA Utils. The most important difference is how dictionary sizes

 are mapped to different presets. Dictionary size is roughly equal to Page 30/37

 the decompressor memory usage.

 Level xz LZMA Utils

 -0 256 KiB N/A

 -1 1 MiB 64 KiB

 -2 2 MiB 1 MiB

 -3 4 MiB 512 KiB

 -4 4 MiB 1 MiB

 -5 8 MiB 2 MiB

 -6 8 MiB 4 MiB

 -7 16 MiB 8 MiB

 -8 32 MiB 16 MiB

 -9 64 MiB 32 MiB

 The dictionary size differences affect the compressor memory usage too,

 but there are some other differences between LZMA Utils and XZ Utils,

 which make the difference even bigger:

 Level xz LZMA Utils 4.32.x

 -0 3 MiB N/A

 -1 9 MiB 2 MiB

 -2 17 MiB 12 MiB

 -3 32 MiB 12 MiB

 -4 48 MiB 16 MiB

 -5 94 MiB 26 MiB

 -6 94 MiB 45 MiB

 -7 186 MiB 83 MiB

 -8 370 MiB 159 MiB

 -9 674 MiB 311 MiB

 The default preset level in LZMA Utils is -7 while in XZ Utils it is

 -6, so both use an 8 MiB dictionary by default.

 Streamed vs. non-streamed .lzma files

 The uncompressed size of the file can be stored in the .lzma header.

 LZMA Utils does that when compressing regular files. The alternative

 is to mark that uncompressed size is unknown and use end-of-payload

 marker to indicate where the decompressor should stop. LZMA Utils uses Page 31/37

 this method when uncompressed size isn't known, which is the case for

 example in pipes.

 xz supports decompressing .lzma files with or without end-of-payload

 marker, but all .lzma files created by xz will use end-of-payload

 marker and have uncompressed size marked as unknown in the .lzma

 header. This may be a problem in some uncommon situations. For exam?

 ple, a .lzma decompressor in an embedded device might work only with

 files that have known uncompressed size. If you hit this problem, you

 need to use LZMA Utils or LZMA SDK to create .lzma files with known un?

 compressed size.

 Unsupported .lzma files

 The .lzma format allows lc values up to 8, and lp values up to 4. LZMA

 Utils can decompress files with any lc and lp, but always creates files

 with lc=3 and lp=0. Creating files with other lc and lp is possible

 with xz and with LZMA SDK.

 The implementation of the LZMA1 filter in liblzma requires that the sum

 of lc and lp must not exceed 4. Thus, .lzma files, which exceed this

 limitation, cannot be decompressed with xz.

 LZMA Utils creates only .lzma files which have a dictionary size of 2^n

 (a power of 2) but accepts files with any dictionary size. liblzma ac?

 cepts only .lzma files which have a dictionary size of 2^n or 2^n +

 2^(n-1). This is to decrease false positives when detecting .lzma

 files.

 These limitations shouldn't be a problem in practice, since practically

 all .lzma files have been compressed with settings that liblzma will

 accept.

 Trailing garbage

 When decompressing, LZMA Utils silently ignore everything after the

 first .lzma stream. In most situations, this is a bug. This also

 means that LZMA Utils don't support decompressing concatenated .lzma

 files.

 If there is data left after the first .lzma stream, xz considers the

 file to be corrupt unless --single-stream was used. This may break ob? Page 32/37

 scure scripts which have assumed that trailing garbage is ignored.

NOTES

 Compressed output may vary

 The exact compressed output produced from the same uncompressed input

 file may vary between XZ Utils versions even if compression options are

 identical. This is because the encoder can be improved (faster or bet?

 ter compression) without affecting the file format. The output can

 vary even between different builds of the same XZ Utils version, if

 different build options are used.

 The above means that once --rsyncable has been implemented, the result?

 ing files won't necessarily be rsyncable unless both old and new files

 have been compressed with the same xz version. This problem can be

 fixed if a part of the encoder implementation is frozen to keep rsynca?

 ble output stable across xz versions.

 Embedded .xz decompressors

 Embedded .xz decompressor implementations like XZ Embedded don't neces?

 sarily support files created with integrity check types other than none

 and crc32. Since the default is --check=crc64, you must use

 --check=none or --check=crc32 when creating files for embedded systems.

 Outside embedded systems, all .xz format decompressors support all the

 check types, or at least are able to decompress the file without veri?

 fying the integrity check if the particular check is not supported.

 XZ Embedded supports BCJ filters, but only with the default start off?

 set.

EXAMPLES

 Basics

 Compress the file foo into foo.xz using the default compression level

 (-6), and remove foo if compression is successful:

 xz foo

 Decompress bar.xz into bar and don't remove bar.xz even if decompres?

 sion is successful:

 xz -dk bar.xz

 Create baz.tar.xz with the preset -4e (-4 --extreme), which is slower Page 33/37

 than e.g. the default -6, but needs less memory for compression and de?

 compression (48 MiB and 5 MiB, respectively):

 tar cf - baz | xz -4e > baz.tar.xz

 A mix of compressed and uncompressed files can be decompressed to stan?

 dard output with a single command:

 xz -dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

 Parallel compression of many files

 On GNU and *BSD, find(1) and xargs(1) can be used to parallelize com?

 pression of many files:

 find . -type f \! -name '*.xz' -print0 \

 | xargs -0r -P4 -n16 xz -T1

 The -P option to xargs(1) sets the number of parallel xz processes.

 The best value for the -n option depends on how many files there are to

 be compressed. If there are only a couple of files, the value should

 probably be 1; with tens of thousands of files, 100 or even more may be

 appropriate to reduce the number of xz processes that xargs(1) will

 eventually create.

 The option -T1 for xz is there to force it to single-threaded mode, be?

 cause xargs(1) is used to control the amount of parallelization.

 Robot mode

 Calculate how many bytes have been saved in total after compressing

 multiple files:

 xz --robot --list *.xz | awk '/^totals/{print $5-$4}'

 A script may want to know that it is using new enough xz. The follow?

 ing sh(1) script checks that the version number of the xz tool is at

 least 5.0.0. This method is compatible with old beta versions, which

 didn't support the --robot option:

 if ! eval "$(xz --robot --version 2> /dev/null)" ||

 ["$XZ_VERSION" -lt 50000002]; then

 echo "Your xz is too old."

 fi

 unset XZ_VERSION LIBLZMA_VERSION

 Set a memory usage limit for decompression using XZ_OPT, but if a limit Page 34/37

 has already been set, don't increase it:

 NEWLIM=$((123 << 20)) # 123 MiB

 OLDLIM=$(xz --robot --info-memory | cut -f3)

 if [$OLDLIM -eq 0 -o $OLDLIM -gt $NEWLIM]; then

 XZ_OPT="$XZ_OPT --memlimit-decompress=$NEWLIM"

 export XZ_OPT

 fi

 Custom compressor filter chains

 The simplest use for custom filter chains is customizing a LZMA2 pre?

 set. This can be useful, because the presets cover only a subset of

 the potentially useful combinations of compression settings.

 The CompCPU columns of the tables from the descriptions of the options

 -0 ... -9 and --extreme are useful when customizing LZMA2 presets.

 Here are the relevant parts collected from those two tables:

 Preset CompCPU

 -0 0

 -1 1

 -2 2

 -3 3

 -4 4

 -5 5

 -6 6

 -5e 7

 -6e 8

 If you know that a file requires somewhat big dictionary (e.g. 32 MiB)

 to compress well, but you want to compress it quicker than xz -8 would

 do, a preset with a low CompCPU value (e.g. 1) can be modified to use a

 bigger dictionary:

 xz --lzma2=preset=1,dict=32MiB foo.tar

 With certain files, the above command may be faster than xz -6 while

 compressing significantly better. However, it must be emphasized that

 only some files benefit from a big dictionary while keeping the CompCPU

 value low. The most obvious situation, where a big dictionary can help Page 35/37

 a lot, is an archive containing very similar files of at least a few

 megabytes each. The dictionary size has to be significantly bigger

 than any individual file to allow LZMA2 to take full advantage of the

 similarities between consecutive files.

 If very high compressor and decompressor memory usage is fine, and the

 file being compressed is at least several hundred megabytes, it may be

 useful to use an even bigger dictionary than the 64 MiB that xz -9

 would use:

 xz -vv --lzma2=dict=192MiB big_foo.tar

 Using -vv (--verbose --verbose) like in the above example can be useful

 to see the memory requirements of the compressor and decompressor. Re?

 member that using a dictionary bigger than the size of the uncompressed

 file is waste of memory, so the above command isn't useful for small

 files.

 Sometimes the compression time doesn't matter, but the decompressor

 memory usage has to be kept low e.g. to make it possible to decompress

 the file on an embedded system. The following command uses -6e (-6

 --extreme) as a base and sets the dictionary to only 64 KiB. The re?

 sulting file can be decompressed with XZ Embedded (that's why there is

 --check=crc32) using about 100 KiB of memory.

 xz --check=crc32 --lzma2=preset=6e,dict=64KiB foo

 If you want to squeeze out as many bytes as possible, adjusting the

 number of literal context bits (lc) and number of position bits (pb)

 can sometimes help. Adjusting the number of literal position bits (lp)

 might help too, but usually lc and pb are more important. E.g. a

 source code archive contains mostly US-ASCII text, so something like

 the following might give slightly (like 0.1 %) smaller file than xz -6e

 (try also without lc=4):

 xz --lzma2=preset=6e,pb=0,lc=4 source_code.tar

 Using another filter together with LZMA2 can improve compression with

 certain file types. E.g. to compress a x86-32 or x86-64 shared library

 using the x86 BCJ filter:

 xz --x86 --lzma2 libfoo.so Page 36/37

 Note that the order of the filter options is significant. If --x86 is

 specified after --lzma2, xz will give an error, because there cannot be

 any filter after LZMA2, and also because the x86 BCJ filter cannot be

 used as the last filter in the chain.

 The Delta filter together with LZMA2 can give good results with bitmap

 images. It should usually beat PNG, which has a few more advanced fil?

 ters than simple delta but uses Deflate for the actual compression.

 The image has to be saved in uncompressed format, e.g. as uncompressed

 TIFF. The distance parameter of the Delta filter is set to match the

 number of bytes per pixel in the image. E.g. 24-bit RGB bitmap needs

 dist=3, and it is also good to pass pb=0 to LZMA2 to accommodate the

 three-byte alignment:

 xz --delta=dist=3 --lzma2=pb=0 foo.tiff

 If multiple images have been put into a single archive (e.g. .tar), the

 Delta filter will work on that too as long as all images have the same

 number of bytes per pixel.

SEE ALSO

 xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1),

 bzip2(1), 7z(1)

 XZ Utils: <https://tukaani.org/xz/>

 XZ Embedded: <https://tukaani.org/xz/embedded.html>

 LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2020-02-01 XZ(1)

Page 37/37

