
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'zshmodules.1' command

$ man zshmodules.1

ZSHMODULES(1)               General Commands Manual              ZSHMODULES(1)

NAME

       zshmodules - zsh loadable modules

DESCRIPTION

       Some  optional  parts  of zsh are in modules, separate from the core of

       the shell.  Each of these modules may be linked  in  to  the  shell  at

       build  time, or can be dynamically linked while the shell is running if

       the installation supports this feature.  Modules are linked at  runtime

       with the zmodload command, see zshbuiltins(1).

       The modules that are bundled with the zsh distribution are:

       zsh/attr

              Builtins for manipulating extended attributes (xattr).

       zsh/cap

              Builtins  for manipulating POSIX.1e (POSIX.6) capability (privi?

              lege) sets.

       zsh/clone

              A builtin that can clone a running shell onto another terminal.

       zsh/compctl

              The compctl builtin for controlling completion.

       zsh/complete

              The basic completion code.

       zsh/complist

              Completion listing extensions. Page 1/89



       zsh/computil

              A module with utility builtins needed  for  the  shell  function

              based completion system.

       zsh/curses

              curses windowing commands

       zsh/datetime

              Some date/time commands and parameters.

       zsh/db/gdbm

              Builtins  for managing associative array parameters tied to GDBM

              databases.

       zsh/deltochar

              A ZLE function duplicating EMACS' zap-to-char.

       zsh/example

              An example of how to write a module.

       zsh/files

              Some basic file manipulation commands as builtins.

       zsh/langinfo

              Interface to locale information.

       zsh/mapfile

              Access to external files via a special associative array.

       zsh/mathfunc

              Standard scientific functions for use  in  mathematical  evalua?

              tions.

       zsh/nearcolor

              Map colours to the nearest colour in the available palette.

       zsh/newuser

              Arrange for files for new users to be installed.

       zsh/parameter

              Access to internal hash tables via special associative arrays.

       zsh/pcre

              Interface to the PCRE library.

       zsh/param/private

              Builtins for managing private-scoped parameters in function con? Page 2/89



              text.

       zsh/regex

              Interface to the POSIX regex library.

       zsh/sched

              A builtin that provides a timed execution  facility  within  the

              shell.

       zsh/net/socket

              Manipulation of Unix domain sockets

       zsh/stat

              A builtin command interface to the stat system call.

       zsh/system

              A builtin interface to various low-level system features.

       zsh/net/tcp

              Manipulation of TCP sockets

       zsh/termcap

              Interface to the termcap database.

       zsh/terminfo

              Interface to the terminfo database.

       zsh/zftp

              A builtin FTP client.

       zsh/zle

              The Zsh Line Editor, including the bindkey and vared builtins.

       zsh/zleparameter

              Access to internals of the Zsh Line Editor via parameters.

       zsh/zprof

              A module allowing profiling for shell functions.

       zsh/zpty

              A builtin for starting a command in a pseudo-terminal.

       zsh/zselect

              Block and return when file descriptors are ready.

       zsh/zutil

              Some utility builtins, e.g. the one for supporting configuration

              via styles. Page 3/89



THE ZSH/ATTR MODULE

       The zsh/attr module is used for manipulating extended attributes.   The

       -h  option  causes all commands to operate on symbolic links instead of

       their targets.  The builtins in this module are:

       zgetattr [ -h ] filename attribute [ parameter ]

              Get the extended attribute attribute from  the  specified  file?

              name. If the optional argument parameter is given, the attribute

              is set on that parameter instead of being printed to stdout.

       zsetattr [ -h ] filename attribute value

              Set the extended attribute attribute on the  specified  filename

              to value.

       zdelattr [ -h ] filename attribute

              Remove the extended attribute attribute from the specified file?

              name.

       zlistattr [ -h ] filename [ parameter ]

              List the extended attributes  currently  set  on  the  specified

              filename.  If the optional argument parameter is given, the list

              of attributes is set on that parameter instead of being  printed

              to stdout.

       zgetattr  and  zlistattr allocate memory dynamically.  If the attribute

       or list of attributes grows between the allocation and the call to  get

       them,  they return 2.  On all other errors, 1 is returned.  This allows

       the calling function to check for this case and retry.

THE ZSH/CAP MODULE

       The zsh/cap module is used for manipulating POSIX.1e (POSIX.6) capabil?

       ity sets.  If the operating system does not support this interface, the

       builtins defined by this module will do nothing.  The builtins in  this

       module are:

       cap [ capabilities ]

              Change  the shell's process capability sets to the specified ca?

              pabilities, otherwise display the shell's current capabilities.

       getcap filename ...

              This is a built-in implementation of the POSIX standard utility. Page 4/89



              It displays the capability sets on each specified filename.

       setcap capabilities filename ...

              This is a built-in implementation of the POSIX standard utility.

              It sets the capability sets on each specified  filename  to  the

              specified capabilities.

THE ZSH/CLONE MODULE

       The zsh/clone module makes available one builtin command:

       clone tty

              Creates  a forked instance of the current shell, attached to the

              specified tty.  In the new shell, the PID, PPID and TTY  special

              parameters  are changed appropriately.  $! is set to zero in the

              new shell, and to the new shell's PID in the original shell.

              The return status of the builtin is zero in both shells if  suc?

              cessful, and non-zero on error.

              The target of clone should be an unused terminal, such as an un?

              used virtual console or a virtual terminal created by

                     xterm -e sh -c 'trap : INT QUIT TSTP; tty;

                             while :; do sleep 100000000; done'

              Some words of explanation are warranted about  this  long  xterm

              command  line: when doing clone on a pseudo-terminal, some other

              session ("session" meant as a unix session group, or SID) is al?

              ready  owning  the terminal. Hence the cloned zsh cannot acquire

              the pseudo-terminal as a controlling tty. That means two things:

              ?      the   job   control    signals    will    go    to    the

                     sh-started-by-xterm  process group (that's why we disable

                     INT QUIT and TSTP with trap;  otherwise  the  while  loop

                     could get suspended or killed)

              ?      the  cloned shell will have job control disabled, and the

                     job control keys  (control-C,  control-\  and  control-Z)

                     will not work.

              This does not apply when cloning to an unused vc.

              Cloning  to  a used (and unprepared) terminal will result in two

              processes reading simultaneously from the  same  terminal,  with Page 5/89



              input bytes going randomly to either process.

              clone  is  mostly  useful  as  a  shell built-in replacement for

              openvt.

THE ZSH/COMPCTL MODULE

       The zsh/compctl module makes available two builtin  commands.  compctl,

       is the old, deprecated way to control completions for ZLE.  See zshcom?

       pctl(1).  The other builtin command, compcall can be used  in  user-de?

       fined completion widgets, see zshcompwid(1).

THE ZSH/COMPLETE MODULE

       The  zsh/complete module makes available several builtin commands which

       can be used in user-defined completion widgets, see zshcompwid(1).

THE ZSH/COMPLIST MODULE

       The zsh/complist module offers three extensions to completion listings:

       the  ability to highlight matches in such a list, the ability to scroll

       through long lists and a different style of menu completion.

   Colored completion listings

       Whenever one of the parameters ZLS_COLORS or ZLS_COLOURS is set and the

       zsh/complist  module  is  loaded  or  linked into the shell, completion

       lists will be colored.  Note, however, that complist will not automati?

       cally  be loaded if it is not linked in:  on systems with dynamic load?

       ing, `zmodload zsh/complist' is required.

       The parameters ZLS_COLORS and  ZLS_COLOURS  describe  how  matches  are

       highlighted.  To turn on highlighting an empty value suffices, in which

       case all the default values given below will be used.   The  format  of

       the value of these parameters is the same as used by the GNU version of

       the ls command: a colon-separated list of specifications  of  the  form

       `name=value'.   The  name  may be one of the following strings, most of

       which specify file types for which the value will be used.  The strings

       and their default values are:

       no 0   for  normal  text  (i.e.  when displaying something other than a

              matched file)

       fi 0   for regular files

       di 32  for directories Page 6/89



       ln 36  for symbolic links.  If this has the special value target,  sym?

              bolic  links are dereferenced and the target file used to deter?

              mine the display format.

       pi 31  for named pipes (FIFOs)

       so 33  for sockets

       bd 44;37

              for block devices

       cd 44;37

              for character devices

       or none

              for a symlink to nonexistent file (default is the value  defined

              for ln)

       mi none

              for  a  non-existent file (default is the value defined for fi);

              this code is currently not used

       su 37;41

              for files with setuid bit set

       sg 30;43

              for files with setgid bit set

       tw 30;42

              for world writable directories with sticky bit set

       ow 34;43

              for world writable directories without sticky bit set

       sa none

              for files with an associated suffix alias; this is  only  tested

              after specific suffixes, as described below

       st 37;44

              for directories with sticky bit set but not world writable

       ex 35  for executable files

       lc \e[ for the left code (see below)

       rc m   for the right code

       tc 0   for  the character indicating the file type  printed after file?

              names if the LIST_TYPES option is set Page 7/89



       sp 0   for the spaces printed after matches to align the next column

       ec none

              for the end code

       Apart from these strings, the name may also be an asterisk  (`*')  fol?

       lowed by any string. The value given for such a string will be used for

       all files whose name ends with the string.  The name  may  also  be  an

       equals  sign (`=') followed by a pattern; the EXTENDED_GLOB option will

       be turned on for evaluation of the pattern.  The value given  for  this

       pattern will be used for all matches (not just filenames) whose display

       string are matched by the pattern.  Definitions for the form  with  the

       leading  equal  sign  take  precedence over the values defined for file

       types, which in turn take precedence over the form with the leading as?

       terisk (file extensions).

       The  leading-equals  form  also allows different parts of the displayed

       strings to be colored differently.  For this, the pattern  has  to  use

       the `(#b)' globbing flag and pairs of parentheses surrounding the parts

       of the strings that are to be colored differently.  In  this  case  the

       value may consist of more than one color code separated by equal signs.

       The first code will be used for all parts for which no explicit code is

       specified and the following codes will be used for the parts matched by

       the  sub-patterns  in  parentheses.   For  example,  the  specification

       `=(#b)(?)*(?)=0=3=7'  will  be  used for all matches which are at least

       two characters long and will use the code `3' for the first  character,

       `7' for the last character and `0' for the rest.

       All  three  forms  of name may be preceded by a pattern in parentheses.

       If this is given, the value will be used only  for  matches  in  groups

       whose  names  are matched by the pattern given in the parentheses.  For

       example, `(g*)m*=43' highlights  all  matches  beginning  with  `m'  in

       groups  whose names  begin with `g' using the color code `43'.  In case

       of the `lc', `rc', and `ec' codes, the group pattern is ignored.

       Note also that all patterns are tried in the order in which they appear

       in  the parameter value until the first one matches which is then used.

       Patterns may be matched  against  completions,  descriptions  (possibly Page 8/89



       with  spaces appended for padding), or lines consisting of a completion

       followed by a description.  For consistent coloring it may be necessary

       to use more than one pattern or a pattern with backreferences.

       When  printing  a match, the code prints the value of lc, the value for

       the file-type or the last matching specification with a `*', the  value

       of  rc,  the string to display for the match itself, and then the value

       of ec if that is defined or the values of lc, no, and rc if ec  is  not

       defined.

       The  default  values  are  ISO 6429 (ANSI) compliant and can be used on

       vt100 compatible terminals such as xterms.  On monochrome terminals the

       default  values  will have no visible effect.  The colors function from

       the contribution can be used to get associative arrays  containing  the

       codes  for ANSI terminals (see the section `Other Functions' in zshcon?

       trib(1)).   For  example,  after  loading   colors,   one   could   use

       `$color[red]'   to   get   the   code  for  foreground  color  red  and

       `$color[bg-green]' for the code for background color green.

       If the completion system invoked by compinit is used, these  parameters

       should  not  be  set  directly because the system controls them itself.

       Instead, the list-colors style should be used (see the section `Comple?

       tion System Configuration' in zshcompsys(1)).

   Scrolling in completion listings

       To enable scrolling through a completion list, the LISTPROMPT parameter

       must be set.  Its value will be used as the prompt; if it is the  empty

       string,  a  default prompt will be used.  The value may contain escapes

       of the form `%x'.  It supports the  escapes  `%B',  `%b',  `%S',  `%s',

       `%U',  `%u',  `%F',  `%f',  `%K', `%k' and `%{...%}' used also in shell

       prompts as well as three pairs of additional sequences: a `%l' or  `%L'

       is  replaced  by the number of the last line shown and the total number

       of lines in the form `number/total'; a `%m' or `%M'  is  replaced  with

       the number of the last match shown and the total number of matches; and

       `%p' or `%P' is replaced with `Top', `Bottom' or the  position  of  the

       first line shown in percent of the total number of lines, respectively.

       In each of these cases the form with the uppercase letter will  be  re? Page 9/89



       placed  with  a string of fixed width, padded to the right with spaces,

       while the lowercase form will not be padded.

       If the parameter LISTPROMPT is set, the completion code will not ask if

       the list should be shown.  Instead it immediately starts displaying the

       list, stopping after the first screenful, showing  the  prompt  at  the

       bottom,  waiting  for  a  keypress  after  temporarily switching to the

       listscroll keymap.  Some of the zle functions have  a  special  meaning

       while scrolling lists:

       send-break

              stops listing discarding the key pressed

       accept-line, down-history, down-line-or-history

       down-line-or-search, vi-down-line-or-history

              scrolls forward one line

       complete-word, menu-complete, expand-or-complete

       expand-or-complete-prefix, menu-complete-or-expand

              scrolls forward one screenful

       accept-search

              stop listing but take no other action

       Every  other  character stops listing and immediately processes the key

       as usual.  Any key that is not bound in the listscroll keymap  or  that

       is  bound  to  undefined-key  is  looked up in the keymap currently se?

       lected.

       As for the ZLS_COLORS and ZLS_COLOURS parameters, LISTPROMPT should not

       be  set directly when using the shell function based completion system.

       Instead, the list-prompt style should be used.

   Menu selection

       The zsh/complist module also offers an alternative style  of  selecting

       matches  from  a  list, called menu selection, which can be used if the

       shell is set up to return to the last prompt after showing a completion

       list (see the ALWAYS_LAST_PROMPT option in zshoptions(1)).

       Menu  selection  can  be invoked directly by the widget menu-select de?

       fined by this module.  This is a standard ZLE widget that can be  bound

       to a key in the usual way as described in zshzle(1). Page 10/89



       Alternatively, the parameter MENUSELECT can be set to an integer, which

       gives the minimum number of matches that must be  present  before  menu

       selection is automatically turned on.  This second method requires that

       menu completion be started, either  directly  from  a  widget  such  as

       menu-complete,  or due to one of the options MENU_COMPLETE or AUTO_MENU

       being set.  If MENUSELECT is set, but is 0, 1 or empty, menu  selection

       will always be started during an ambiguous menu completion.

       When  using the completion system based on shell functions, the MENUSE?

       LECT parameter should not be used (like the ZLS_COLORS and  ZLS_COLOURS

       parameters  described  above).   Instead, the menu style should be used

       with the select=... keyword.

       After menu selection is started, the matches will be listed.  If  there

       are  more  matches  than fit on the screen, only the first screenful is

       shown.  The matches to insert into the command  line  can  be  selected

       from  this  list.  In the list one match is highlighted using the value

       for ma from the ZLS_COLORS or ZLS_COLOURS parameter.  The default value

       for this is `7' which forces the selected match to be highlighted using

       standout mode on a vt100-compatible terminal.   If  neither  ZLS_COLORS

       nor  ZLS_COLOURS  is set, the same terminal control sequence as for the

       `%S' escape in prompts is used.

       If there are more matches than fit on  the  screen  and  the  parameter

       MENUPROMPT  is set, its value will be shown below the matches.  It sup?

       ports the same escape sequences as LISTPROMPT, but the  number  of  the

       match  or  line shown will be that of the one where the mark is placed.

       If its value is the empty string, a default prompt will be used.

       The MENUSCROLL parameter can  be  used  to  specify  how  the  list  is

       scrolled.   If the parameter is unset, this is done line by line, if it

       is set to `0' (zero), the list will scroll half the number of lines  of

       the  screen.  If the value is positive, it gives the number of lines to

       scroll and if it is negative, the list will be scrolled the  number  of

       lines of the screen minus the (absolute) value.

       As  for  the ZLS_COLORS, ZLS_COLOURS and LISTPROMPT parameters, neither

       MENUPROMPT nor MENUSCROLL should be set directly when using  the  shell Page 11/89



       function  based  completion system.  Instead, the select-prompt and se?

       lect-scroll styles should be used.

       The completion code sometimes decides not to show all of the matches in

       the  list.   These hidden matches are either matches for which the com?

       pletion function which added them explicitly requested  that  they  not

       appear in the list (using the -n option of the compadd builtin command)

       or they are matches which duplicate a string already in the  list  (be?

       cause they differ only in things like prefixes or suffixes that are not

       displayed).  In the list used for menu selection, however,  even  these

       matches  are shown so that it is possible to select them.  To highlight

       such  matches  the  hi  and  du  capabilities  in  the  ZLS_COLORS  and

       ZLS_COLOURS  parameters  are  supported for hidden matches of the first

       and second kind, respectively.

       Selecting matches is done by moving the mark around using the zle move?

       ment functions.  When not all matches can be shown on the screen at the

       same time, the list will scroll up and down when crossing  the  top  or

       bottom  line.   The following zle functions have special meaning during

       menu selection.  Note that the following always perform the  same  task

       within  the  menu  selection map and cannot be replaced by user defined

       widgets, nor can the set of functions be extended:

       accept-line, accept-search

              accept the current match and leave menu selection  (but  do  not

              cause the command line to be accepted)

       send-break

              leaves  menu selection and restores the previous contents of the

              command line

       redisplay, clear-screen

              execute their normal function without leaving menu selection

       accept-and-hold, accept-and-menu-complete

              accept the currently inserted match and continue  selection  al?

              lowing to select the next match to insert into the line

       accept-and-infer-next-history

              accepts  the  current  match and then tries completion with menu Page 12/89



              selection again;  in the case of files this allows one to select

              a directory and immediately attempt to complete files in it;  if

              there are no matches, a message is shown and one can use undo to

              go  back  to  completion  on the previous level, every other key

              leaves menu selection (including the other zle  functions  which

              are otherwise special during menu selection)

       undo   removes matches inserted during the menu selection by one of the

              three functions before

       down-history, down-line-or-history

       vi-down-line-or-history,  down-line-or-search

              moves the mark one line down

       up-history, up-line-or-history

       vi-up-line-or-history, up-line-or-search

              moves the mark one line up

       forward-char, vi-forward-char

              moves the mark one column right

       backward-char, vi-backward-char

              moves the mark one column left

       forward-word, vi-forward-word

       vi-forward-word-end, emacs-forward-word

              moves the mark one screenful down

       backward-word, vi-backward-word, emacs-backward-word

              moves the mark one screenful up

       vi-forward-blank-word, vi-forward-blank-word-end

              moves the mark to the first line of the next group of matches

       vi-backward-blank-word

              moves the mark to the last line of the previous group of matches

       beginning-of-history

              moves the mark to the first line

       end-of-history

              moves the mark to the last line

       beginning-of-buffer-or-history, beginning-of-line

       beginning-of-line-hist, vi-beginning-of-line Page 13/89



              moves the mark to the leftmost column

       end-of-buffer-or-history, end-of-line

       end-of-line-hist, vi-end-of-line

              moves the mark to the rightmost column

       complete-word, menu-complete, expand-or-complete

       expand-or-complete-prefix, menu-expand-or-complete

              moves the mark to the next match

       reverse-menu-complete

              moves the mark to the previous match

       vi-insert

              this toggles between normal and interactive mode; in interactive

              mode the keys bound to self-insert and self-insert-unmeta insert

              into the command line as in  normal  editing  mode  but  without

              leaving menu selection; after each character completion is tried

              again and the list changes to contain only the new matches;  the

              completion  widgets  make  the longest unambiguous string be in?

              serted in the command line and undo and backward-delete-char  go

              back to the previous set of matches

       history-incremental-search-forward

       history-incremental-search-backward

              this starts incremental searches in the list of completions dis?

              played;  in  this  mode,  accept-line  only  leaves  incremental

              search, going back to the normal menu selection mode

       All movement functions wrap around at the edges; any other zle function

       not listed leaves menu selection and executes  that  function.   It  is

       possible  to  make  widgets  in the above list do the same by using the

       form of the widget with a `.' in front.  For example, the widget  `.ac?

       cept-line'  has  the effect of leaving menu selection and accepting the

       entire command line.

       During this selection the widget uses the keymap menuselect.   Any  key

       that is not defined in this keymap or that is bound to undefined-key is

       looked up in the keymap currently selected.  This  is  used  to  ensure

       that  the  most important keys used during selection (namely the cursor Page 14/89



       keys, return, and TAB) have sensible defaults.  However,  keys  in  the

       menuselect  keymap  can  be modified directly using the bindkey builtin

       command (see zshmodules(1)). For example, to make the return key  leave

       menu selection without accepting the match currently selected one could

       call

              bindkey -M menuselect '^M' send-break

       after loading the zsh/complist module.

THE ZSH/COMPUTIL MODULE

       The zsh/computil module adds several builtin commands that are used  by

       some  of  the  completion  functions  in the completion system based on

       shell functions (see  zshcompsys(1)  ).   Except  for  compquote  these

       builtin  commands  are  very  specialised and thus not very interesting

       when writing your own completion functions.  In summary, these  builtin

       commands are:

       comparguments

              This  is  used by the _arguments function to do the argument and

              command line parsing.  Like compdescribe it has an option -i  to

              do  the  parsing  and initialize some internal state and various

              options to access the state information to decide what should be

              completed.

       compdescribe

              This is used by the _describe function to build the displays for

              the matches and to get the strings to add as matches with  their

              options.   On  the first call one of the options -i or -I should

              be supplied as the first argument.  In the first  case,  display

              strings  without the descriptions will be generated, in the sec?

              ond case, the string used to separate the matches from their de?

              scriptions must be given as the second argument and the descrip?

              tions (if any) will be shown.  All other arguments are like  the

              definition arguments to _describe itself.

              Once  compdescribe  has been called with either the -i or the -I

              option, it can be repeatedly called with the -g option  and  the

              names  of  four  parameters  as  its  arguments.  This will step Page 15/89



              through the different sets of matches and  store  the  value  of

              compstate[list]  in the first scalar, the options for compadd in

              the second array, the  matches  in  the  third  array,  and  the

              strings  to be displayed in the completion listing in the fourth

              array.  The arrays may then be directly given to compadd to reg?

              ister the matches with the completion code.

       compfiles

              Used  by  the _path_files function to optimize complex recursive

              filename generation (globbing).  It does three things.  With the

              -p  and -P options it builds the glob patterns to use, including

              the paths already handled and trying to  optimize  the  patterns

              with  respect  to  the  prefix  and suffix from the line and the

              match specification currently used.  The -i option does the  di?

              rectory  tests  for  the  ignore-parents style and the -r option

              tests if a component for some of the matches are  equal  to  the

              string  on  the  line  and  removes all other matches if that is

              true.

       compgroups

              Used by the _tags function to implement  the  internals  of  the

              group-order  style.   This  only takes its arguments as names of

              completion groups and creates the groups for it (all six  types:

              sorted  and unsorted, both without removing duplicates, with re?

              moving all duplicates and with removing consecutive duplicates).

       compquote [ -p ] names ...

              There may be reasons to write completion functions that have  to

              add the matches using the -Q option to compadd and perform quot?

              ing themselves.  Instead of interpreting the first character  of

              the  all_quotes key of the compstate special association and us?

              ing the q flag  for  parameter  expansions,  one  can  use  this

              builtin command.  The arguments are the names of scalar or array

              parameters and the values of  these  parameters  are  quoted  as

              needed  for  the  innermost  quoting level.  If the -p option is

              given, quoting is done as if there is  some  prefix  before  the Page 16/89



              values  of the parameters, so that a leading equal sign will not

              be quoted.

              The return status is non-zero in case of an error and zero  oth?

              erwise.

       comptags

       comptry

              These implement the internals of the tags mechanism.

       compvalues

              Like comparguments, but for the _values function.

THE ZSH/CURSES MODULE

       The  zsh/curses  module makes available one builtin command and various

       parameters.

   Builtin

       zcurses init

       zcurses end

       zcurses addwin targetwin nlines ncols begin_y begin_x [ parentwin ]

       zcurses delwin targetwin

       zcurses refresh [ targetwin ... ]

       zcurses touch targetwin ...

       zcurses move targetwin new_y new_x

       zcurses clear targetwin [ redraw | eol | bot ]

       zcurses position targetwin array

       zcurses char targetwin character

       zcurses string targetwin string

       zcurses border targetwin border

       zcurses attr targetwin [ [+|-]attribute | fg_col/bg_col ] [...]

       zcurses bg targetwin [ [+|-]attribute | fg_col/bg_col | @char ] [...]

       zcurses scroll targetwin [ on | off | [+|-]lines ]

       zcurses input targetwin [ param [ kparam [ mparam ] ] ]

       zcurses mouse [ delay num | [+|-]motion ]

       zcurses timeout targetwin intval

       zcurses querychar targetwin [ param ]

       zcurses resize height width [ endwin | nosave | endwin_nosave ] Page 17/89



              Manipulate curses windows.  All uses of this command  should  be

              bracketed  by  `zcurses  init'  to initialise use of curses, and

              `zcurses end' to end it; omitting `zcurses end'  can  cause  the

              terminal to be in an unwanted state.

              The  subcommand  addwin  creates  a window with nlines lines and

              ncols columns.  Its upper left corner will be placed at row  be?

              gin_y  and  column begin_x of the screen.  targetwin is a string

              and refers to the name of a window that  is  not  currently  as?

              signed.   Note in particular the curses convention that vertical

              values appear before horizontal values.

              If addwin is given an existing window as the final argument, the

              new window is created as a subwindow of parentwin.  This differs

              from an ordinary new window in that the  memory  of  the  window

              contents is shared with the parent's memory.  Subwindows must be

              deleted before their parent.  Note that the coordinates of  sub?

              windows  are  relative  to  the  screen, not the parent, as with

              other windows.

              Use the subcommand delwin to delete a window  created  with  ad?

              dwin.   Note  that  end  does not implicitly delete windows, and

              that delwin does not erase the screen image of the window.

              The window corresponding to the full visible  screen  is  called

              stdscr;  it  always  exists  after  `zcurses init' and cannot be

              delete with delwin.

              The subcommand refresh will refresh window  targetwin;  this  is

              necessary  to  make  any pending changes (such as characters you

              have prepared for output with char) visible on the screen.   re?

              fresh  without  an  argument causes the screen to be cleared and

              redrawn.  If multiple windows are given, the screen  is  updated

              once at the end.

              The  subcommand  touch  marks  the targetwins listed as changed.

              This is necessary before refreshing windows if a window that was

              in front of another window (which may be stdscr) is deleted.

              The  subcommand  move  moves the cursor position in targetwin to Page 18/89



              new coordinates new_y  and  new_x.   Note  that  the  subcommand

              string  (but  not the subcommand char) advances the cursor posi?

              tion over the characters added.

              The subcommand clear erases the contents of targetwin.  One (and

              no  more  than one) of three options may be specified.  With the

              option redraw, in addition the next refresh  of  targetwin  will

              cause  the  screen to be cleared and repainted.  With the option

              eol, targetwin is only cleared to the end of the current  cursor

              line.   With  the option bot, targetwin is cleared to the end of

              the window, i.e everything to the right and below the cursor  is

              cleared.

              The subcommand position writes various positions associated with

              targetwin into the array named array.  These are, in order:

              -      The y and x coordinates of the cursor relative to the top

                     left of targetwin

              -      The  y  and x coordinates of the top left of targetwin on

                     the screen

              -      The size of targetwin in y and x dimensions.

              Outputting characters and  strings  are  achieved  by  char  and

              string respectively.

              To draw a border around window targetwin, use border.  Note that

              the border is not  subsequently  handled  specially:   in  other

              words,  the  border  is simply a set of characters output at the

              edge of the window.  Hence it can be overwritten, can scroll off

              the window, etc.

              The  subcommand  attr  will  set targetwin's attributes or fore?

              ground/background color pair for any successive  character  out?

              put.   Each  attribute given on the line may be prepended by a +

              to set or a - to unset that attribute; + is assumed  if  absent.

              The  attributes  supported are blink, bold, dim, reverse, stand?

              out, and underline.

              Each fg_col/bg_col attribute (to be read as `fg_col on  bg_col')

              sets  the  foreground and background color for character output. Page 19/89



              The color default is sometimes available (in particular  if  the

              library  is  ncurses),  specifying  the foreground or background

              color with which the  terminal  started.   The  color  pair  de?

              fault/default  is always available. To use more than the 8 named

              colors (red, green,  etc.)  construct  the  fg_col/bg_col  pairs

              where  fg_col and bg_col are decimal integers, e.g 128/200.  The

              maximum color value is 254 if the terminal supports 256 colors.

              bg overrides the color and other attributes of all characters in

              the  window.   Its usual use is to set the background initially,

              but it will overwrite the attributes of any  characters  at  the

              time  when  it  is called.  In addition to the arguments allowed

              with attr, an argument @char specifies a character to  be  shown

              in otherwise blank areas of the window.  Owing to limitations of

              curses this cannot be a multibyte character (use of ASCII  char?

              acters only is recommended).  As the specified set of attributes

              override the existing background, turning attributes off in  the

              arguments is not useful, though this does not cause an error.

              The  subcommand  scroll can be used with on or off to enabled or

              disable scrolling of a window when the  cursor  would  otherwise

              move  below  the window due to typing or output.  It can also be

              used with a positive or negative integer to scroll the window up

              or  down  the given number of lines without changing the current

              cursor position (which therefore appears to move in the opposite

              direction  relative  to  the  window).   In  the second case, if

              scrolling is off it is temporarily turned on to allow the window

              to be scrolled.

              The  subcommand  input  reads a single character from the window

              without echoing it back.  If param is supplied the character  is

              assigned  to the parameter param, else it is assigned to the pa?

              rameter REPLY.

              If both param and kparam are supplied, the key is read in  `key?

              pad'  mode.  In this mode special keys such as function keys and

              arrow keys return the name of the key in the  parameter  kparam. Page 20/89



              The  key  names  are  the  macros  defined  in  the  curses.h or

              ncurses.h with the prefix `KEY_' removed; see also the  descrip?

              tion  of the parameter zcurses_keycodes below.  Other keys cause

              a value to be set in param as before.  On  a  successful  return

              only  one  of  param  or kparam contains a non-empty string; the

              other is set to an empty string.

              If mparam is also supplied, input attempts to handle  mouse  in?

              put.   This  is  only  available with the ncurses library; mouse

              handling can be detected by checking  for  the  exit  status  of

              `zcurses mouse' with no arguments.  If a mouse button is clicked

              (or double- or triple-clicked, or pressed  or  released  with  a

              configurable delay from being clicked) then kparam is set to the

              string MOUSE, and mparam is set to an array  consisting  of  the

              following elements:

              -      An  identifier  to  discriminate different input devices;

                     this is only rarely useful.

              -      The x, y and z coordinates of the mouse click relative to

                     the  full  screen,  as three elements in that order (i.e.

                     the y coordinate is, unusually, after the x  coordinate).

                     The  z coordinate is only available for a few unusual in?

                     put devices and is otherwise set to zero.

              -      Any events that occurred as separate items; usually there

                     will  be  just  one.   An  event consists of PRESSED, RE?

                     LEASED, CLICKED, DOUBLE_CLICKED  or  TRIPLE_CLICKED  fol?

                     lowed  immediately (in the same element) by the number of

                     the button.

              -      If the shift key was pressed, the string SHIFT.

              -      If the control key was pressed, the string CTRL.

              -      If the alt key was pressed, the string ALT.

              Not all mouse events may be passed through to the terminal  win?

              dow;  most  terminal  emulators  handle  some mouse events them?

              selves.  Note that the ncurses manual implies that  using  input

              both  with and without mouse handling may cause the mouse cursor Page 21/89



              to appear and disappear.

              The subcommand mouse can be used to configure  the  use  of  the

              mouse.   There  is no window argument; mouse options are global.

              `zcurses mouse' with no arguments returns status 0 if mouse han?

              dling is possible, else status 1.  Otherwise, the possible argu?

              ments (which may be combined on the same command  line)  are  as

              follows.   delay  num sets the maximum delay in milliseconds be?

              tween press and release events to be considered as a click;  the

              value  0 disables click resolution, and the default is one sixth

              of a second.  motion proceeded by an optional `+' (the  default)

              or  -  turns  on or off reporting of mouse motion in addition to

              clicks, presses and releases, which are always  reported.   How?

              ever,  it appears reports for mouse motion are not currently im?

              plemented.

              The subcommand timeout specifies a timeout value for input  from

              targetwin.  If intval is negative, `zcurses input' waits indefi?

              nitely for a character to be typed; this  is  the  default.   If

              intval is zero, `zcurses input' returns immediately; if there is

              typeahead it is returned, else no input is done and status 1  is

              returned.   If  intval is positive, `zcurses input' waits intval

              milliseconds for input and if there is none at the end  of  that

              period returns status 1.

              The  subcommand  querychar  queries the character at the current

              cursor position.  The return values  are  stored  in  the  array

              named  param  if  supplied,  else in the array reply.  The first

              value is the character (which may be a  multibyte  character  if

              the  system  supports them); the second is the color pair in the

              usual fg_col/bg_col notation, or 0 if color  is  not  supported.

              Any  attributes other than color that apply to the character, as

              set with the subcommand attr, appear as additional elements.

              The subcommand resize resizes stdscr and all  windows  to  given

              dimensions  (windows  that stick out from the new dimensions are

              resized down).  The  underlying  curses  extension  (resize_term Page 22/89



              call)  can  be  unavailable.  To  verify, zeroes can be used for

              height and width. If the result of  the  subcommand  is  0,  re?

              size_term  is  available (2 otherwise). Tests show that resizing

              can be normally accomplished by calling zcurses end and  zcurses

              refresh. The resize subcommand is provided for versatility. Mul?

              tiple system configurations have been checked  and  zcurses  end

              and  zcurses refresh are still needed for correct terminal state

              after resize. To invoke them with resize, use  endwin  argument.

              Using  nosave  argument  will cause new terminal state to not be

              saved internally by zcurses. This is also provided for versatil?

              ity and should normally be not needed.

   Parameters

       ZCURSES_COLORS

              Readonly  integer.   The  maximum  number of colors the terminal

              supports.  This value is initialised by the curses  library  and

              is not available until the first time zcurses init is run.

       ZCURSES_COLOR_PAIRS

              Readonly   integer.    The   maximum   number   of  color  pairs

              fg_col/bg_col that may be defined in  `zcurses  attr'  commands;

              note  this  limit applies to all color pairs that have been used

              whether or not they are currently active.  This  value  is  ini?

              tialised  by  the  curses library and is not available until the

              first time zcurses init is run.

       zcurses_attrs

              Readonly array.  The attributes supported by zsh/curses;  avail?

              able as soon as the module is loaded.

       zcurses_colors

              Readonly  array.   The colors supported by zsh/curses; available

              as soon as the module is loaded.

       zcurses_keycodes

              Readonly array.  The values that may be returned in  the  second

              parameter supplied to `zcurses input' in the order in which they

              are defined internally by curses.  Not  all  function  keys  are Page 23/89



              listed, only F0; curses reserves space for F0 up to F63.

       zcurses_windows

              Readonly  array.   The current list of windows, i.e. all windows

              that have been created with `zcurses  addwin'  and  not  removed

              with `zcurses delwin'.

THE ZSH/DATETIME MODULE

       The zsh/datetime module makes available one builtin command:

       strftime [ -s scalar ] format [ epochtime [ nanoseconds ] ]

       strftime -r [ -q ] [ -s scalar ] format timestring

              Output the date in the format specified.  With no epochtime, the

              current system date/time is used; optionally, epochtime  may  be

              used  to  specify  the  number  of  seconds since the epoch, and

              nanoseconds may additionally be used to specify  the  number  of

              nanoseconds past the second (otherwise that number is assumed to

              be 0).  See strftime(3) for details.   The  zsh  extensions  de?

              scribed  in  the  section  EXPANSION OF PROMPT SEQUENCES in zsh?

              misc(1) are also available.

              -q     Run quietly; suppress printing of all error messages  de?

                     scribed  below.   Errors for invalid epochtime values are

                     always printed.

              -r     With the option -r (reverse), use format to parse the in?

                     put  string  timestring  and output the number of seconds

                     since the epoch at which the time occurred.  The  parsing

                     is implemented by the system function strptime; see strp?

                     time(3).  This means that zsh format extensions  are  not

                     available, but for reverse lookup they are not required.

                     In  most  implementations of strftime any timezone in the

                     timestring is ignored and the local timezone declared  by

                     the TZ environment variable is used; other parameters are

                     set to zero if not present.

                     If timestring does not match format the  command  returns

                     status  1  and  prints  an  error message.  If timestring

                     matches format but not all characters in timestring  were Page 24/89



                     used,  the  conversion  succeeds but also prints an error

                     message.

                     If either of the system functions strptime or  mktime  is

                     not  available, status 2 is returned and an error message

                     is printed.

              -s scalar

                     Assign the date string (or epoch time in seconds if -r is

                     given) to scalar instead of printing it.

              Note that depending on the system's declared integral time type,

              strftime may produce incorrect results for epoch  times  greater

              than 2147483647 which corresponds to 2038-01-19 03:14:07 +0000.

       The  zsh/datetime  module  makes  available several parameters; all are

       readonly:

       EPOCHREALTIME

              A floating point value representing the number of seconds  since

              the  epoch.   The  notional  accuracy  is  to nanoseconds if the

              clock_gettime call is available and to  microseconds  otherwise,

              but in practice the range of double precision floating point and

              shell scheduling latencies may be significant effects.

       EPOCHSECONDS

              An integer value representing the number of  seconds  since  the

              epoch.

       epochtime

              An  array value containing the number of seconds since the epoch

              in the first element and the remainder of  the  time  since  the

              epoch  in  nanoseconds in the second element.  To ensure the two

              elements are consistent the array should be copied or  otherwise

              referenced  as a single substitution before the values are used.

              The following idiom may be used:

                     for secs nsecs in $epochtime; do

                       ...

                     done

THE ZSH/DB/GDBM MODULE Page 25/89



       The zsh/db/gdbm module is used to create "tied" associative arrays that

       interface  to  database files.  If the GDBM interface is not available,

       the builtins defined by this module will report an error.  This  module

       is also intended as a prototype for creating additional database inter?

       faces, so the ztie builtin may move to a more generic module in the fu?

       ture.

       The builtins in this module are:

       ztie -d db/gdbm -f filename [ -r ] arrayname

              Open  the  GDBM database identified by filename and, if success?

              ful, create the associative array arrayname linked to the  file.

              To  create  a  local tied array, the parameter must first be de?

              clared, so commands similar to the following would  be  executed

              inside a function scope:

                     local -A sampledb

                     ztie -d db/gdbm -f sample.gdbm sampledb

              The -r option opens the database file for reading only, creating

              a parameter with the readonly attribute.  Without  this  option,

              using  `ztie'  on  a file for which the user does not have write

              permission is an error.  If writable,  the  database  is  opened

              synchronously  so  fields  changed  in arrayname are immediately

              written to filename.

              Changes to the file modes filename after it has been  opened  do

              not  alter  the  state  of arrayname, but `typeset -r arrayname'

              works as expected.

       zuntie [ -u ] arrayname ...

              Close the GDBM database associated with each arrayname and  then

              unset  the  parameter.  The -u option forces an unset of parame?

              ters made readonly with `ztie -r'.

              This happens automatically if the parameter is explicitly  unset

              or its local scope (function) ends.  Note that a readonly param?

              eter may not be explicitly unset, so the only  way  to  unset  a

              global parameter created with `ztie -r' is to use `zuntie -u'.

       zgdbmpath parametername Page 26/89



              Put  path  to database file assigned to parametername into REPLY

              scalar.

       zgdbm_tied

              Array holding names of all tied parameters.

       The fields of an associative array tied to GDBM are neither cached  nor

       otherwise  stored in memory, they are read from or written to the data?

       base on each reference.  Thus, for example, the values  in  a  readonly

       array may be changed by a second writer of the same database file.

THE ZSH/DELTOCHAR MODULE

       The zsh/deltochar module makes available two ZLE functions:

       delete-to-char

              Read  a  character from the keyboard, and delete from the cursor

              position up to and including the next (or, with repeat count  n,

              the  nth)  instance  of  that character.  Negative repeat counts

              mean delete backwards.

       zap-to-char

              This behaves like delete-to-char, except that the  final  occur?

              rence of the character itself is not deleted.

THE ZSH/EXAMPLE MODULE

       The zsh/example module makes available one builtin command:

       example [ -flags ] [ args ... ]

              Displays the flags and arguments it is invoked with.

       The  purpose  of the module is to serve as an example of how to write a

       module.

THE ZSH/FILES MODULE

       The zsh/files module makes available some common commands for file  ma?

       nipulation as builtins; these commands are probably not needed for many

       normal situations but can be useful in  emergency  recovery  situations

       with constrained resources.  The commands do not implement all features

       now required by relevant standards committees.

       For all commands, a variant beginning zf_ is also available and  loaded

       automatically.   Using the features capability of zmodload will let you

       load only those names you want.  Note that it's possible to  load  only Page 27/89



       the builtins with zsh-specific names using the following command:

              zmodload -m -F zsh/files b:zf_\*

       The commands loaded by default are:

       chgrp [ -hRs ] group filename ...

              Changes  group  of files specified.  This is equivalent to chown

              with a user-spec argument of `:group'.

       chmod [ -Rs ] mode filename ...

              Changes mode of files specified.

              The specified mode must be in octal.

              The -R option causes chmod to recursively descend into  directo?

              ries,  changing  the  mode  of  all files in the directory after

              changing the mode of the directory itself.

              The -s option is a zsh extension to chmod functionality.  It en?

              ables  paranoid  behaviour,  intended to avoid security problems

              involving a chmod being tricked into affecting files other  than

              the  ones intended.  It will refuse to follow symbolic links, so

              that (for example) ``chmod 600 /tmp/foo/passwd'' can't  acciden?

              tally  chmod  /etc/passwd  if  /tmp/foo  happens to be a link to

              /etc.  It will also check where it is after leaving directories,

              so  that a recursive chmod of a deep directory tree can't end up

              recursively chmoding /usr as a result of directories being moved

              up the tree.

       chown [ -hRs ] user-spec filename ...

              Changes ownership and group of files specified.

              The user-spec can be in four forms:

              user   change owner to user; do not change group

              user:: change owner to user; do not change group

              user:  change  owner  to  user;  change  group to user's primary

                     group

              user:group

                     change owner to user; change group to group

              :group do not change owner; change group to group

              In each case, the `:' may instead be a `.'.  The rule is that if Page 28/89



              there  is a `:' then the separator is `:', otherwise if there is

              a `.' then the separator is `.', otherwise there is  no  separa?

              tor.

              Each  of user and group may be either a username (or group name,

              as appropriate) or a decimal user ID (group ID).  Interpretation

              as  a name takes precedence, if there is an all-numeric username

              (or group name).

              If the target is a symbolic link, the -h option causes chown  to

              set the ownership of the link instead of its target.

              The  -R option causes chown to recursively descend into directo?

              ries, changing the ownership of all files in the directory after

              changing the ownership of the directory itself.

              The -s option is a zsh extension to chown functionality.  It en?

              ables paranoid behaviour, intended to  avoid  security  problems

              involving  a chown being tricked into affecting files other than

              the ones intended.  It will refuse to follow symbolic links,  so

              that  (for  example) ``chown luser /tmp/foo/passwd'' can't acci?

              dentally chown /etc/passwd if /tmp/foo happens to be a  link  to

              /etc.  It will also check where it is after leaving directories,

              so that a recursive chown of a deep directory tree can't end  up

              recursively chowning /usr as a result of directories being moved

              up the tree.

       ln [ -dfhins ] filename dest

       ln [ -dfhins ] filename ... dir

              Creates hard (or, with -s, symbolic) links.  In the first  form,

              the specified destination is created, as a link to the specified

              filename.  In the second form, each of the filenames is taken in

              turn,  and  linked to a pathname in the specified directory that

              has the same last pathname component.

              Normally, ln will not attempt to create hard links  to  directo?

              ries.   This check can be overridden using the -d option.  Typi?

              cally only the super-user can actually succeed in creating  hard

              links  to directories.  This does not apply to symbolic links in Page 29/89



              any case.

              By default, existing files cannot be replaced by links.  The  -i

              option  causes  the  user to be queried about replacing existing

              files.  The -f option  causes  existing  files  to  be  silently

              deleted, without querying.  -f takes precedence.

              The  -h and -n options are identical and both exist for compati?

              bility; either one indicates that if the  target  is  a  symlink

              then  it  should not be dereferenced.  Typically this is used in

              combination with -sf so that if an existing link points to a di?

              rectory  then  it will be removed, instead of followed.  If this

              option is used with multiple filenames and the target is a  sym?

              bolic link pointing to a directory then the result is an error.

       mkdir [ -p ] [ -m mode ] dir ...

              Creates  directories.   With  the -p option, non-existing parent

              directories are first created if necessary, and there will be no

              complaint if the directory already exists.  The -m option can be

              used to specify (in octal) a set of  file  permissions  for  the

              created  directories, otherwise mode 777 modified by the current

              umask (see umask(2)) is used.

       mv [ -fi ] filename dest

       mv [ -fi ] filename ... dir

              Moves files.  In the first form, the specified filename is moved

              to  the  specified destination.  In the second form, each of the

              filenames is taken in turn, and moved to a pathname in the spec?

              ified directory that has the same last pathname component.

              By  default,  the user will be queried before replacing any file

              that the user cannot  write  to,  but  writable  files  will  be

              silently  removed.   The -i option causes the user to be queried

              about replacing any existing files.  The -f  option  causes  any

              existing  files  to  be  silently deleted, without querying.  -f

              takes precedence.

              Note that this mv will not move files across devices.   Histori?

              cal  versions  of  mv,  when actual renaming is impossible, fall Page 30/89



              back on copying and removing files; if  this  behaviour  is  de?

              sired, use cp and rm manually.  This may change in a future ver?

              sion.

       rm [ -dfiRrs ] filename ...

              Removes files and directories specified.

              Normally, rm will not remove directories (except with the -R  or

              -r  options).   The -d option causes rm to try removing directo?

              ries with unlink (see  unlink(2)),  the  same  method  used  for

              files.   Typically  only  the super-user can actually succeed in

              unlinking directories in this way.  -d takes precedence over  -R

              and -r.

              By  default,  the  user will be queried before removing any file

              that the user cannot  write  to,  but  writable  files  will  be

              silently  removed.   The -i option causes the user to be queried

              about removing any files.  The -f  option  causes  files  to  be

              silently deleted, without querying, and suppresses all error in?

              dications.  -f takes precedence.

              The -R and -r options cause rm to recursively descend  into  di?

              rectories,  deleting  all files in the directory before removing

              the directory with the rmdir system call (see rmdir(2)).

              The -s option is a zsh extension to rm  functionality.   It  en?

              ables  paranoid  behaviour,  intended  to  avoid common security

              problems involving a root-run rm  being  tricked  into  removing

              files  other  than  the ones intended.  It will refuse to follow

              symbolic links, so that  (for  example)  ``rm  /tmp/foo/passwd''

              can't  accidentally remove /etc/passwd if /tmp/foo happens to be

              a link to /etc.  It will also check where it  is  after  leaving

              directories,  so  that  a  recursive removal of a deep directory

              tree can't end up recursively removing /usr as a result  of  di?

              rectories being moved up the tree.

       rmdir dir ...

              Removes empty directories specified.

       sync   Calls  the  system  call  of  the same name (see sync(2)), which Page 31/89



              flushes dirty buffers to disk.  It might return before  the  I/O

              has actually been completed.

THE ZSH/LANGINFO MODULE

       The zsh/langinfo module makes available one parameter:

       langinfo

              An  associative  array that maps langinfo elements to their val?

              ues.

              Your implementation may support a number of the following keys:

              CODESET, D_T_FMT, D_FMT, T_FMT, RADIXCHAR, THOUSEP, YESEXPR, NO?

              EXPR,   CRNCYSTR,   ABDAY_{1..7},   DAY_{1..7},   ABMON_{1..12},

              MON_{1..12},  T_FMT_AMPM,  AM_STR,   PM_STR,   ERA,   ERA_D_FMT,

              ERA_D_T_FMT, ERA_T_FMT, ALT_DIGITS

THE ZSH/MAPFILE MODULE

       The zsh/mapfile module provides one special associative array parameter

       of the same name.

       mapfile

              This associative array takes as keys the names of files; the re?

              sulting  value is the content of the file.  The value is treated

              identically to any other text  coming  from  a  parameter.   The

              value  may  also be assigned to, in which case the file in ques?

              tion is written (whether or not it originally  existed);  or  an

              element  may  be  unset, which will delete the file in question.

              For example, `vared mapfile[myfile]' works as expected,  editing

              the file `myfile'.

              When the array is accessed as a whole, the keys are the names of

              files in the current directory, and the  values  are  empty  (to

              save  a  huge  overhead  in memory).  Thus ${(k)mapfile} has the

              same effect as the glob operator  *(D),  since  files  beginning

              with a dot are not special.  Care must be taken with expressions

              such as rm ${(k)mapfile}, which will delete every  file  in  the

              current directory without the usual `rm *' test.

              The parameter mapfile may be made read-only; in that case, files

              referenced may not be written or deleted. Page 32/89



              A file may conveniently be read into an array as  one  line  per

              element with the form `array=("${(f@)mapfile[filename]}")'.  The

              double quotes and the `@' are necessary to prevent  empty  lines

              from  being removed.  Note that if the file ends with a newline,

              the shell will split on the final newline, generating  an  addi?

              tional  empty  field;  this  can  be  suppressed  by  using `ar?

              ray=("${(f@)${mapfile[filename]%$'\n'}}")'.

   Limitations

       Although reading and writing of the file  in  question  is  efficiently

       handled,  zsh's  internal memory management may be arbitrarily baroque;

       however, mapfile is usually very much more efficient than anything  in?

       volving a loop.  Note in particular that the whole contents of the file

       will always reside physically in memory when accessed (possibly  multi?

       ple times, due to standard parameter substitution operations).  In par?

       ticular, this means handling of sufficiently long files  (greater  than

       the  machine's  swap space, or than the range of the pointer type) will

       be incorrect.

       No errors are printed or flagged for non-existent, unreadable,  or  un?

       writable files, as the parameter mechanism is too low in the shell exe?

       cution hierarchy to make this convenient.

       It is unfortunate that the mechanism for loading modules does  not  yet

       allow  the  user to specify the name of the shell parameter to be given

       the special behaviour.

THE ZSH/MATHFUNC MODULE

       The zsh/mathfunc module provides standard  mathematical  functions  for

       use when evaluating mathematical formulae.  The syntax agrees with nor?

       mal C and FORTRAN conventions, for example,

              (( f = sin(0.3) ))

       assigns the sine of 0.3 to the parameter f.

       Most functions take floating point  arguments  and  return  a  floating

       point  value.   However,  any  necessary conversions from or to integer

       type will be performed automatically by the  shell.   Apart  from  atan

       with  a second argument and the abs, int and float functions, all func? Page 33/89



       tions behave as noted in the manual page for the corresponding C  func?

       tion,  except that any arguments out of range for the function in ques?

       tion will be detected by the shell and an error reported.

       The following functions take a single floating  point  argument:  acos,

       acosh, asin, asinh, atan, atanh, cbrt, ceil, cos, cosh, erf, erfc, exp,

       expm1, fabs, floor, gamma, j0, j1, lgamma,  log,  log10,  log1p,  log2,

       logb,  sin,  sinh,  sqrt, tan, tanh, y0, y1.  The atan function can op?

       tionally take a second argument, in which case it behaves  like  the  C

       function atan2.  The ilogb function takes a single floating point argu?

       ment, but returns an integer.

       The function signgam takes no arguments, and returns an integer,  which

       is  the  C  variable  of the same name, as described in gamma(3).  Note

       that it is therefore only useful immediately after a call to  gamma  or

       lgamma.   Note also that `signgam()' and `signgam' are distinct expres?

       sions.

       The functions min, max, and sum are defined not in this module  but  in

       the  zmathfunc  autoloadable function, described in the section `Mathe?

       matical Functions' in zshcontrib(1).

       The following functions take two floating  point  arguments:  copysign,

       fmod, hypot, nextafter.

       The  following take an integer first argument and a floating point sec?

       ond argument: jn, yn.

       The following take a floating point first argument and an integer  sec?

       ond argument: ldexp, scalb.

       The  function  abs does not convert the type of its single argument; it

       returns the absolute value of either a floating point number or an  in?

       teger.   The  functions  float  and  int convert their arguments into a

       floating point or integer value (by truncation) respectively.

       Note that the C pow function is available in ordinary  math  evaluation

       as the `**' operator and is not provided here.

       The  function rand48 is available if your system's mathematical library

       has the function erand48(3).  It returns a pseudo-random floating point

       number between 0 and 1.  It takes a single string optional argument. Page 34/89



       If  the  argument is not present, the random number seed is initialised

       by three calls to the rand(3) function --- this produces the same  ran?

       dom numbers as the next three values of $RANDOM.

       If  the  argument  is  present, it gives the name of a scalar parameter

       where the current random number seed will  be  stored.   On  the  first

       call,  the  value  must contain at least twelve hexadecimal digits (the

       remainder of the string is ignored), or the seed will be initialised in

       the  same  manner as for a call to rand48 with no argument.  Subsequent

       calls to rand48(param) will then maintain the  seed  in  the  parameter

       param as a string of twelve hexadecimal digits, with no base signifier.

       The random number sequences for different parameters are completely in?

       dependent,  and  are also independent from that used by calls to rand48

       with no argument.

       For example, consider

              print $(( rand48(seed) ))

              print $(( rand48() ))

              print $(( rand48(seed) ))

       Assuming $seed does not exist, it will  be  initialised  by  the  first

       call.   In the second call, the default seed is initialised; note, how?

       ever, that because of the properties of rand() there is  a  correlation

       between  the seeds used for the two initialisations, so for more secure

       uses, you should generate your own 12-byte seed.  The  third  call  re?

       turns  to  the  same sequence of random numbers used in the first call,

       unaffected by the intervening rand48().

THE ZSH/NEARCOLOR MODULE

       The zsh/nearcolor module replaces colours  specified  as  hex  triplets

       with  the  nearest  colour  in  the  88 or 256 colour palettes that are

       widely used by terminal emulators.  By default, 24-bit true colour  es?

       cape codes are generated when colours are specified using hex triplets.

       These are not supported by all terminals.  The purpose of  this  module

       is  to  make  it easier to define colour preferences in a form that can

       work across a range of terminal emulators.

       Aside from the default colour, the ANSI standard  for  terminal  escape Page 35/89



       codes  provides  for eight colours. The bright attribute brings this to

       sixteen. These basic colours are commonly used in terminal applications

       due  to being widely supported. Expanded 88 and 256 colour palettes are

       also common and, while the first sixteen colours vary somewhat  between

       terminals and configurations, these add a generally consistent and pre?

       dictable set of colours.

       In order to use the zsh/nearcolor module, it only needs to  be  loaded.

       Thereafter, whenever a colour is specified using a hex triplet, it will

       be compared against each of the available colours and the closest  will

       be  selected.  The  first  sixteen  colours  are  never matched in this

       process due to being unpredictable.

       It isn't possible to reliably detect support for  true  colour  in  the

       terminal emulator. It is therefore recommended to be selective in load?

       ing the zsh/nearcolor module. For example,  the  following  checks  the

       COLORTERM environment variable:

              [[ $COLORTERM = *(24bit|truecolor)* ]] || zmodload zsh/nearcolor

       Note  that  some  terminals  accept the true color escape codes but map

       them internally to a more limited palette in a similar  manner  to  the

       zsh/nearcolor module.

THE ZSH/NEWUSER MODULE

       The  zsh/newuser  module  is loaded at boot if it is available, the RCS

       option is set, and the PRIVILEGED option is not set (all three are true

       by default).  This takes place immediately after commands in the global

       zshenv file (typically /etc/zshenv), if any, have  been  executed.   If

       the  module  is  not available it is silently ignored by the shell; the

       module may safely be removed from $MODULE_PATH by the administrator  if

       it is not required.

       On  loading,  the  module  tests  if any of the start-up files .zshenv,

       .zprofile, .zshrc or .zlogin exist in the directory given by the  envi?

       ronment  variable  ZDOTDIR, or the user's home directory if that is not

       set.  The test is not performed and the module halts processing if  the

       shell  was  in  an  emulation mode (i.e. had been invoked as some other

       shell than zsh). Page 36/89



       If none of the start-up files were found, the module then looks for the

       file  newuser  first in a sitewide directory, usually the parent direc?

       tory of the site-functions directory, and if that is not found the mod?

       ule searches in a version-specific directory, usually the parent of the

       functions directory containing version-specific functions.  (These  di?

       rectories  can  be  configured  when  zsh  is  built  using  the  --en?

       able-site-scriptdir=dir and --enable-scriptdir=dir flags to  configure,

       respectively;    the    defaults    are   prefix/share/zsh   and   pre?

       fix/share/zsh/$ZSH_VERSION where the default prefix is /usr/local.)

       If the file newuser is found, it is then sourced in the same manner  as

       a  start-up  file.   The  file  is  expected to contain code to install

       start-up files for the user, however any valid shell code will be  exe?

       cuted.

       The zsh/newuser module is then unconditionally unloaded.

       Note  that  it  is  possible  to achieve exactly the same effect as the

       zsh/newuser module by adding code to /etc/zshenv.   The  module  exists

       simply  to  allow  the shell to make arrangements for new users without

       the need for intervention by package maintainers and system administra?

       tors.

       The  script  supplied  with  the  module  invokes  the  shell  function

       zsh-newuser-install.  This may be invoked directly by the user even  if

       the  zsh/newuser module is disabled.  Note, however, that if the module

       is not installed the function will not be installed either.  The  func?

       tion  is documented in the section User Configuration Functions in zsh?

       contrib(1).

THE ZSH/PARAMETER MODULE

       The zsh/parameter module gives access to some of the internal hash  ta?

       bles used by the shell by defining some special parameters.

       options

              The keys for this associative array are the names of the options

              that can  be  set  and  unset  using  the  setopt  and  unsetopt

              builtins.  The  value of each key is either the string on if the

              option is currently set, or the string off if the option is  un? Page 37/89



              set.   Setting  a key to one of these strings is like setting or

              unsetting the option, respectively. Unsetting a key in this  ar?

              ray is like setting it to the value off.

       commands

              This  array gives access to the command hash table. The keys are

              the names of external commands, the values are the pathnames  of

              the  files  that would be executed when the command would be in?

              voked. Setting a key in this array defines a new entry  in  this

              table  in the same way as with the hash builtin. Unsetting a key

              as in `unset "commands[foo]"' removes the entry  for  the  given

              key from the command hash table.

       functions

              This  associative array maps names of enabled functions to their

              definitions. Setting a key in it is  like  defining  a  function

              with  the name given by the key and the body given by the value.

              Unsetting a key removes the definition for the function named by

              the key.

       dis_functions

              Like functions but for disabled functions.

       functions_source

              This  readonly associative array maps names of enabled functions

              to the name of the file containing the source of the function.

              For an autoloaded function that  has  already  been  loaded,  or

              marked  for  autoload with an absolute path, or that has had its

              path resolved with `functions -r', this is the  file  found  for

              autoloading, resolved to an absolute path.

              For  a  function  defined within the body of a script or sourced

              file, this is the name of that file.  In this case, this is  the

              exact path originally used to that file, which may be a relative

              path.

              For any other function, including any defined at an  interactive

              prompt  or  an autoload function whose path has not yet been re?

              solved, this is the empty string.  However, the hash element  is Page 38/89



              reported  as  defined  just  so long as the function is present:

              the keys to this hash are the same as those to $functions.

       dis_functions_source

              Like functions_source but for disabled functions.

       builtins

              This associative array gives information about the builtin  com?

              mands  currently  enabled. The keys are the names of the builtin

              commands and the values are either `undefined' for builtin  com?

              mands that will automatically be loaded from a module if invoked

              or `defined' for builtin commands that are already loaded.

       dis_builtins

              Like builtins but for disabled builtin commands.

       reswords

              This array contains the enabled reserved words.

       dis_reswords

              Like reswords but for disabled reserved words.

       patchars

              This array contains the enabled pattern characters.

       dis_patchars

              Like patchars but for disabled pattern characters.

       aliases

              This maps the names of the regular aliases currently enabled  to

              their expansions.

       dis_aliases

              Like aliases but for disabled regular aliases.

       galiases

              Like aliases, but for global aliases.

       dis_galiases

              Like galiases but for disabled global aliases.

       saliases

              Like raliases, but for suffix aliases.

       dis_saliases

              Like saliases but for disabled suffix aliases. Page 39/89



       parameters

              The  keys in this associative array are the names of the parame?

              ters currently defined. The values are  strings  describing  the

              type  of the parameter, in the same format used by the t parame?

              ter flag, see zshexpn(1) .  Setting or unsetting  keys  in  this

              array is not possible.

       modules

              An  associative array giving information about modules. The keys

              are the names of  the  modules  loaded,  registered  to  be  au?

              toloaded,  or aliased. The value says which state the named mod?

              ule is in and is one of the strings `loaded',  `autoloaded',  or

              `alias:name', where name is the name the module is aliased to.

              Setting or unsetting keys in this array is not possible.

       dirstack

              A normal array holding the elements of the directory stack. Note

              that the output of the dirs builtin command  includes  one  more

              directory, the current working directory.

       history

              This  associative  array  maps history event numbers to the full

              history lines.  Although it is presented as an  associative  ar?

              ray, the array of all values (${history[@]}) is guaranteed to be

              returned in order from most recent to oldest history event, that

              is, by decreasing history event number.

       historywords

              A  special  array  containing  the  words stored in the history.

              These also appear in most to least recent order.

       jobdirs

              This associative array maps job numbers to the directories  from

              which  the  job was started (which may not be the current direc?

              tory of the job).

              The keys of the associative arrays are usually  valid  job  num?

              bers,  and  these  are  the  values  output  with,  for example,

              ${(k)jobdirs}.  Non-numeric job  references  may  be  used  when Page 40/89



              looking  up  a  value; for example, ${jobdirs[%+]} refers to the

              current job.

       jobtexts

              This associative array maps job numbers to the texts of the com?

              mand lines that were used to start the jobs.

              Handling  of  the  keys of the associative array is as described

              for jobdirs above.

       jobstates

              This associative array gives information about the states of the

              jobs  currently known. The keys are the job numbers and the val?

              ues are strings of the form  `job-state:mark:pid=state...'.  The

              job-state  gives the state the whole job is currently in, one of

              `running', `suspended', or `done'. The mark is `+' for the  cur?

              rent  job, `-' for the previous job and empty otherwise. This is

              followed by one `:pid=state' for every process in the  job.  The

              pids are, of course, the process IDs and the state describes the

              state of that process.

              Handling of the keys of the associative array  is  as  described

              for jobdirs above.

       nameddirs

              This  associative  array  maps the names of named directories to

              the pathnames they stand for.

       userdirs

              This associative array maps user names to the pathnames of their

              home directories.

       usergroups

              This  associative array maps names of system groups of which the

              current user is a member to the corresponding group identifiers.

              The  contents  are  the same as the groups output by the id com?

              mand.

       funcfiletrace

              This array contains the absolute line numbers and  corresponding

              file  names  for  the  point where the current function, sourced Page 41/89



              file, or (if EVAL_LINENO is set) eval command was  called.   The

              array  is  of  the same length as funcsourcetrace and functrace,

              but differs from funcsourcetrace in that the line and  file  are

              the point of call, not the point of definition, and differs from

              functrace in that all values are absolute line numbers in files,

              rather than relative to the start of a function, if any.

       funcsourcetrace

              This  array  contains  the  file  names  and line numbers of the

              points where the functions, sourced files, and  (if  EVAL_LINENO

              is  set)  eval  commands  currently being executed were defined.

              The line number is the line where the `function name'  or  `name

              ()'  started.   In  the case of an autoloaded function  the line

              number is reported as zero.  The format of each element is file?

              name:lineno.

              For functions autoloaded from a file in native zsh format, where

              only the body of the function occurs in the file, or  for  files

              that have been executed by the source or `.' builtins, the trace

              information is shown as filename:0, since the entire file is the

              definition.   The  source  file  name is resolved to an absolute

              path when the function is loaded or the path to it otherwise re?

              solved.

              Most  users  will  be interested in the information in the func?

              filetrace array instead.

       funcstack

              This array contains the names of the functions,  sourced  files,

              and  (if EVAL_LINENO is set) eval commands. currently being exe?

              cuted. The first element is the name of the function  using  the

              parameter.

              The  standard shell array zsh_eval_context can be used to deter?

              mine the type of shell construct being executed at  each  depth:

              note,  however, that is in the opposite order, with the most re?

              cent item last, and it is more detailed, for  example  including

              an entry for toplevel, the main shell code being executed either Page 42/89



              interactively or from a script, which is not present  in  $func?

              stack.

       functrace

              This  array  contains  the names and line numbers of the callers

              corresponding to the functions currently  being  executed.   The

              format  of  each element is name:lineno.  Callers are also shown

              for sourced files; the caller is the point where the  source  or

              `.' command was executed.

THE ZSH/PCRE MODULE

       The zsh/pcre module makes some commands available as builtins:

       pcre_compile [ -aimxs ] PCRE

              Compiles a perl-compatible regular expression.

              Option -a will force the pattern to be anchored.  Option -i will

              compile a case-insensitive pattern.  Option -m  will  compile  a

              multi-line  pattern; that is, ^ and $ will match newlines within

              the pattern.   Option  -x  will  compile  an  extended  pattern,

              wherein  whitespace and # comments are ignored.  Option -s makes

              the dot metacharacter match all characters, including those that

              indicate newline.

       pcre_study

              Studies  the previously-compiled PCRE which may result in faster

              matching.

       pcre_match [ -v var ] [ -a arr ] [ -n offset ] [ -b ] string

              Returns successfully if string matches  the  previously-compiled

              PCRE.

              Upon  successful  match,  if  the expression captures substrings

              within parentheses, pcre_match will set the array match to those

              substrings, unless the -a option is given, in which case it will

              set the array arr.  Similarly, the variable MATCH will be set to

              the  entire  matched portion of the string, unless the -v option

              is given, in which case the variable var will be set.  No  vari?

              ables  are altered if there is no successful match.  A -n option

              starts searching for a match from the byte  offset  position  in Page 43/89



              string.   If  the -b option is given, the variable ZPCRE_OP will

              be set to an offset pair string, representing  the  byte  offset

              positions  of the entire matched portion within the string.  For

              example, a ZPCRE_OP set to "32 45" indicates  that  the  matched

              portion  began  on  byte  offset 32 and ended on byte offset 44.

              Here, byte offset position 45 is the position directly after the

              matched portion.  Keep in mind that the byte position isn't nec?

              essarily the same as the character position when  UTF-8  charac?

              ters  are involved.  Consequently, the byte offset positions are

              only to be relied on in the context of using them for subsequent

              searches  on  string, using an offset position as an argument to

              the -n option.  This is mostly used to implement the  "find  all

              non-overlapping matches" functionality.

              A simple example of "find all non-overlapping matches":

                     string="The following zip codes: 78884 90210 99513"

                     pcre_compile -m "\d{5}"

                     accum=()

                     pcre_match -b -- $string

                     while [[ $? -eq 0 ]] do

                         b=($=ZPCRE_OP)

                         accum+=$MATCH

                         pcre_match -b -n $b[2] -- $string

                     done

                     print -l $accum

       The zsh/pcre module makes available the following test condition:

       expr -pcre-match pcre

              Matches a string against a perl-compatible regular expression.

              For example,

                     [[ "$text" -pcre-match ^d+$ ]] &&

                     print text variable contains only "d's".

              If the REMATCH_PCRE option is set, the =~ operator is equivalent

              to -pcre-match, and the NO_CASE_MATCH option may be used.   Note

              that  NO_CASE_MATCH never applies to the pcre_match builtin, in? Page 44/89



              stead use the -i switch of pcre_compile.

THE ZSH/PARAM/PRIVATE MODULE

       The zsh/param/private module is used to create parameters  whose  scope

       is  limited  to  the  current function body, and not to other functions

       called by the current function.

       This module provides a single autoloaded builtin:

       private [ {+|-}AHUahlprtux ] [ {+|-}EFLRZi [ n ] ] [ name[=value] ... ]

              The private builtin accepts all the same options  and  arguments

              as  local (zshbuiltins(1)) except for the `-T' option.  Tied pa?

              rameters may not be made private.

              If used at the top level (outside  a  function  scope),  private

              creates  a  normal  parameter  in  the same manner as declare or

              typeset.  A warning about this is printed if  WARN_CREATE_GLOBAL

              is  set  (zshoptions(1)).  Used inside a function scope, private

              creates a local parameter similar to one  declared  with  local,

              except having special properties noted below.

              Special  parameters  which  expose  or manipulate internal shell

              state, such as ARGC,  argv,  COLUMNS,  LINES,  UID,  EUID,  IFS,

              PROMPT, RANDOM, SECONDS, etc., cannot be made private unless the

              `-h' option is used to hide the special meaning of  the  parame?

              ter.  This may change in the future.

       As  with other typeset equivalents, private is both a builtin and a re?

       served word, so arrays may be assigned  with  parenthesized  word  list

       name=(value...)  syntax.   However,  the reserved word `private' is not

       available until zsh/param/private is loaded, so care must be taken with

       order  of execution and parsing for function definitions which use pri?

       vate.  To compensate for this, the module also adds the option `-P'  to

       the `local' builtin to declare private parameters.

       For  example,  this construction fails if zsh/param/private has not yet

       been loaded when `bad_declaration' is defined:

              bad_declaration() {

                zmodload zsh/param/private

                private array=( one two three ) Page 45/89



              }

       This construction works because local is already  a  keyword,  and  the

       module is loaded before the statement is executed:

              good_declaration() {

                zmodload zsh/param/private

                local -P array=( one two three )

              }

       The following is usable in scripts but may have trouble with autoload:

              zmodload zsh/param/private

              iffy_declaration() {

                private array=( one two three )

              }

       The  private builtin may always be used with scalar assignments and for

       declarations without assignments.

       Parameters declared with private have the following properties:

       ?      Within the function body where it is declared, the parameter be?

              haves  as a local, except as noted above for tied or special pa?

              rameters.

       ?      The type of a parameter declared private cannot  be  changed  in

              the scope where it was declared, even if the parameter is unset.

              Thus an array cannot be assigned to a private scalar, etc.

       ?      Within any other function called by the declaring function,  the

              private  parameter  does  NOT  hide other parameters of the same

              name, so for example a global parameter of the same name is vis?

              ible  and  may  be  assigned  or  unset.  This includes calls to

              anonymous functions, although that may also change  in  the  fu?

              ture.

       ?      An  exported  private remains in the environment of inner scopes

              but appears unset for the current shell in those scopes.  Gener?

              ally, exporting private parameters should be avoided.

       Note  that  this differs from the static scope defined by compiled lan?

       guages derived from C, in that the a new call to the same function cre?

       ates a new scope, i.e., the parameter is still associated with the call Page 46/89



       stack rather than with the function definition.  It  differs  from  ksh

       `typeset  -S'  because  the  syntax  used to define the function has no

       bearing on whether the parameter scope is respected.

THE ZSH/REGEX MODULE

       The zsh/regex module makes available the following test condition:

       expr -regex-match regex

              Matches a string against a POSIX  extended  regular  expression.

              On successful match, matched portion of the string will normally

              be placed in the MATCH variable.  If  there  are  any  capturing

              parentheses within the regex, then the match array variable will

              contain those.  If the match is not successful, then  the  vari?

              ables will not be altered.

              For example,

                     [[ alphabetical -regex-match ^a([^a]+)a([^a]+)a ]] &&

                     print -l $MATCH X $match

              If the option REMATCH_PCRE is not set, then the =~ operator will

              automatically load this module as needed  and  will  invoke  the

              -regex-match operator.

              If  BASH_REMATCH is set, then the array BASH_REMATCH will be set

              instead of MATCH and match.

THE ZSH/SCHED MODULE

       The zsh/sched module makes available one builtin command and one param?

       eter.

       sched [-o] [+]hh:mm[:ss] command ...

       sched [-o] [+]seconds command ...

       sched [ -item ]

              Make an entry in the scheduled list of commands to execute.  The

              time may be specified in either absolute or relative  time,  and

              either as hours, minutes and (optionally) seconds separated by a

              colon, or seconds alone.  An absolute number  of  seconds  indi?

              cates  the time since the epoch (1970/01/01 00:00); this is use?

              ful in combination with the features in the zsh/datetime module,

              see the zsh/datetime module entry in zshmodules(1). Page 47/89



              With  no  arguments,  prints the list of scheduled commands.  If

              the scheduled command has the -o flag set, this is shown at  the

              start of the command.

              With the argument `-item', removes the given item from the list.

              The numbering of the list is continuous and entries are in  time

              order,  so  the  numbering  can change when entries are added or

              deleted.

              Commands are executed either immediately  before  a  prompt,  or

              while the shell's line editor is waiting for input.  In the lat?

              ter case it is useful to be able to produce output that does not

              interfere  with  the line being edited.  Providing the option -o

              causes the shell to clear the command line before the event  and

              redraw  it  afterwards.   This should be used with any scheduled

              event that produces visible output to the terminal;  it  is  not

              needed,  for example, with output that updates a terminal emula?

              tor's title bar.

              To effect changes to the editor buffer when an  event  executes,

              use the `zle' command with no arguments to test whether the edi?

              tor is active, and if it is, then use `zle widget' to access the

              editor via the named widget.

              The  sched  builtin  is  not  made available by default when the

              shell starts in a mode emulating another shell.  It can be  made

              available with the command `zmodload -F zsh/sched b:sched'.

       zsh_scheduled_events

              A  readonly  array  corresponding to the events scheduled by the

              sched builtin.  The indices of the array correspond to the  num?

              bers  shown  when  sched is run with no arguments (provided that

              the KSH_ARRAYS option is not set).  The value of the array  con?

              sists  of the scheduled time in seconds since the epoch (see the

              section `The zsh/datetime Module' for facilities for using  this

              number), followed by a colon, followed by any options (which may

              be empty but will be preceded by a `-' otherwise), followed by a

              colon, followed by the command to be executed. Page 48/89



              The  sched  builtin  should be used for manipulating the events.

              Note that this will have an immediate effect on the contents  of

              the array, so that indices may become invalid.

THE ZSH/NET/SOCKET MODULE

       The zsh/net/socket module makes available one builtin command:

       zsocket [ -altv ] [ -d fd ] [ args ]

              zsocket  is  implemented as a builtin to allow full use of shell

              command line editing, file I/O, and job control mechanisms.

   Outbound Connections

       zsocket [ -v ] [ -d fd ] filename

              Open a new Unix domain connection to filename.  The shell param?

              eter  REPLY  will  be set to the file descriptor associated with

              that connection.  Currently, only stream  connections  are  sup?

              ported.

              If  -d  is  specified,  its argument will be taken as the target

              file descriptor for the connection.

              In order to elicit more verbose output, use -v.

              File descriptors can be closed with normal shell syntax when  no

              longer needed, for example:

                     exec {REPLY}>&-

   Inbound Connections

       zsocket -l [ -v ] [ -d fd ] filename

              zsocket  -l will open a socket listening on filename.  The shell

              parameter REPLY will be set to the  file  descriptor  associated

              with  that  listener.   The file descriptor remains open in sub?

              shells and forked external executables.

              If -d is specified, its argument will be  taken  as  the  target

              file descriptor for the connection.

              In order to elicit more verbose output, use -v.

       zsocket -a [ -tv ] [ -d targetfd ] listenfd

              zsocket  -a will accept an incoming connection to the socket as?

              sociated with listenfd.  The shell parameter REPLY will  be  set

              to  the  file descriptor associated with the inbound connection. Page 49/89



              The file descriptor remains open in subshells and forked  exter?

              nal executables.

              If  -d  is  specified,  its argument will be taken as the target

              file descriptor for the connection.

              If -t is specified, zsocket will return if no  incoming  connec?

              tion is pending.  Otherwise it will wait for one.

              In order to elicit more verbose output, use -v.

THE ZSH/STAT MODULE

       The  zsh/stat module makes available one builtin command under two pos?

       sible names:

       zstat [ -gnNolLtTrs ] [ -f fd ] [ -H hash ] [ -A array ] [ -F fmt ]

             [ +element ] [ file ... ]

       stat ...

              The command acts as a front end to the  stat  system  call  (see

              stat(2)).   The  same command is provided with two names; as the

              name stat is often used by an external command it is recommended

              that  only  the  zstat form of the command is used.  This can be

              arranged by loading the module with  the  command  `zmodload  -F

              zsh/stat b:zstat'.

              If  the  stat  call  fails, the appropriate system error message

              printed and status 1 is returned.  The  fields  of  struct  stat

              give  information  about  the files provided as arguments to the

              command.  In addition to those available from the stat call,  an

              extra element `link' is provided.  These elements are:

              device The number of the device on which the file resides.

              inode  The  unique  number  of  the file on this device (`inode'

                     number).

              mode   The mode of the file; that is, the file's type and access

                     permissions.   With  the -s option, this will be returned

                     as a string corresponding to the first column in the dis?

                     play of the ls -l command.

              nlink  The number of hard links to the file.

              uid    The  user  ID  of the owner of the file.  With the -s op? Page 50/89



                     tion, this is displayed as a user name.

              gid    The group ID of the file.  With the -s  option,  this  is

                     displayed as a group name.

              rdev   The  raw  device number.  This is only useful for special

                     devices.

              size   The size of the file in bytes.

              atime

              mtime

              ctime  The last access, modification and inode change  times  of

                     the  file,  respectively,  as the number of seconds since

                     midnight GMT on 1st January, 1970.  With the  -s  option,

                     these are printed as strings for the local time zone; the

                     format can be altered with the -F option, and with the -g

                     option the times are in GMT.

              blksize

                     The number of bytes in one allocation block on the device

                     on which the file resides.

              block  The number of disk blocks used by the file.

              link   If the file is a link and the -L  option  is  in  effect,

                     this  contains  the name of the file linked to, otherwise

                     it is empty.  Note  that  if  this  element  is  selected

                     (``zstat  +link'')  then  the  -L option is automatically

                     used.

              A particular element may be selected by including its name  pre?

              ceded  by a `+' in the option list; only one element is allowed.

              The element may be shortened to any unique set of leading  char?

              acters.  Otherwise, all elements will be shown for all files.

              Options:

              -A array

                     Instead of displaying the results on standard output, as?

                     sign them to an array, one struct stat element per  array

                     element for each file in order.  In this case neither the

                     name of the element nor the name of the files appears  in Page 51/89



                     array  unless  the  -t  or -n options were given, respec?

                     tively.  If -t is given, the element name  appears  as  a

                     prefix  to the appropriate array element; if -n is given,

                     the file name appears as a separate array element preced?

                     ing  all  the  others.   Other formatting options are re?

                     spected.

              -H hash

                     Similar to -A, but instead assign  the  values  to  hash.

                     The keys are the elements listed above.  If the -n option

                     is provided then the name of the file is included in  the

                     hash with key name.

              -f fd  Use  the  file  on  file  descriptor  fd instead of named

                     files; no list of file names is allowed in this case.

              -F fmt Supplies a strftime (see strftime(3)) string for the for?

                     matting of the time elements.  The format string supports

                     all of the zsh extensions described in the section EXPAN?

                     SION OF PROMPT SEQUENCES in zshmisc(1).  The -s option is

                     implied.

              -g     Show the time elements in the GMT time zone.  The -s  op?

                     tion is implied.

              -l     List  the  names of the type elements (to standard output

                     or an array as appropriate) and return immediately; argu?

                     ments, and options other than -A, are ignored.

              -L     Perform an lstat (see lstat(2)) rather than a stat system

                     call.  In this case, if the file is a  link,  information

                     about  the link itself rather than the target file is re?

                     turned.  This option is required to make the link element

                     useful.   It's  important  to note that this is the exact

                     opposite from ls(1), etc.

              -n     Always show the names of files.  Usually these  are  only

                     shown when output is to standard output and there is more

                     than one file in the list.

              -N     Never show the names of files. Page 52/89



              -o     If a raw file mode is printed, show it in octal, which is

                     more  useful  for  human  consumption than the default of

                     decimal.  A leading zero will be printed  in  this  case.

                     Note that this does not affect whether a raw or formatted

                     file mode is shown, which is controlled by the -r and  -s

                     options, nor whether a mode is shown at all.

              -r     Print raw data (the default format) alongside string data

                     (the -s format); the string data appears  in  parentheses

                     after the raw data.

              -s     Print  mode,  uid,  gid  and  the  three time elements as

                     strings instead of numbers.  In each case the  format  is

                     like that of ls -l.

              -t     Always  show  the  type  names for the elements of struct

                     stat.  Usually these are only shown  when  output  is  to

                     standard  output  and  no individual element has been se?

                     lected.

              -T     Never show the type names of the struct stat elements.

THE ZSH/SYSTEM MODULE

       The zsh/system module makes available various builtin commands and  pa?

       rameters.

   Builtins

       syserror [ -e errvar ] [ -p prefix ] [ errno | errname ]

              This command prints out the error message associated with errno,

              a system error number, followed by a newline to standard error.

              Instead of the error number, a name errname, for example ENOENT,

              may  be  used.   The set of names is the same as the contents of

              the array errnos, see below.

              If the string prefix is given, it is printed in front of the er?

              ror message, with no intervening space.

              If errvar is supplied, the entire message, without a newline, is

              assigned to the parameter names errvar and nothing is output.

              A return status of 0  indicates  the  message  was  successfully

              printed  (although  it may not be useful if the error number was Page 53/89



              out of the system's range), a return status of  1  indicates  an

              error  in the parameters, and a return status of 2 indicates the

              error name was not recognised (no message is printed for this).

       sysopen [ -arw ] [ -m permissions ] [ -o options ]

               -u fd file

              This command opens a file. The -r,  -w  and  -a  flags  indicate

              whether  the  file should be opened for reading, writing and ap?

              pending, respectively. The -m option allows the initial  permis?

              sions to use when creating a file to be specified in octal form.

              The file descriptor is specified with  -u.  Either  an  explicit

              file  descriptor in the range 0 to 9 can be specified or a vari?

              able name can be given to which the file descriptor number  will

              be assigned.

              The -o option allows various system specific options to be spec?

              ified as a comma-separated list. The following is a list of pos?

              sible  options. Note that, depending on the system, some may not

              be available.

              cloexec

                     mark file to be closed when other programs  are  executed

                     (else  the  file descriptor remains open in subshells and

                     forked external executables)

              create

              creat  create file if it does not exist

              excl   create file, error if it already exists

              noatime

                     suppress updating of the file atime

              nofollow

                     fail if file is a symbolic link

              sync   request that writes wait until data has  been  physically

                     written

              truncate

              trunc  truncate file to size 0

              To close the file, use one of the following: Page 54/89



                     exec {fd}<&-

                     exec {fd}>&-

       sysread [ -c countvar ] [ -i infd ] [ -o outfd ]

               [ -s bufsize ] [ -t timeout ] [ param ]

              Perform  a single system read from file descriptor infd, or zero

              if that is not given.  The result of the read is stored in param

              or REPLY if that is not given.  If countvar is given, the number

              of bytes read is assigned to the parameter named by countvar.

              The maximum number of bytes read is bufsize or 8192 if  that  is

              not  given, however the command returns as soon as any number of

              bytes was successfully read.

              If timeout is given, it specifies a timeout  in  seconds,  which

              may be zero to poll the file descriptor.  This is handled by the

              poll system call if available, otherwise the select system  call

              if available.

              If  outfd  is  given,  an attempt is made to write all the bytes

              just read to the file descriptor outfd.  If this fails,  because

              of a system error other than EINTR or because of an internal zsh

              error during an interrupt, the bytes read but  not  written  are

              stored  in  the parameter named by param if supplied (no default

              is used in this case), and the number  of  bytes  read  but  not

              written  is stored in the parameter named by countvar if that is

              supplied.  If it was successful, countvar contains the full num?

              ber of bytes transferred, as usual, and param is not set.

              The  error EINTR (interrupted system call) is handled internally

              so that shell interrupts are transparent  to  the  caller.   Any

              other error causes a return.

              The possible return statuses are

              0      At  least  one byte of data was successfully read and, if

                     appropriate, written.

              1      There was an error in  the  parameters  to  the  command.

                     This  is the only error for which a message is printed to

                     standard error. Page 55/89



              2      There was an error on the read, or on polling  the  input

                     file descriptor for a timeout.  The parameter ERRNO gives

                     the error.

              3      Data were successfully read, but there was an error writ?

                     ing them to outfd.  The parameter ERRNO gives the error.

              4      The  attempt  to  read timed out.  Note this does not set

                     ERRNO as this is not a system error.

              5      No system error occurred, but zero bytes were read.  This

                     usually  indicates  end  of file.  The parameters are set

                     according to the usual rules; no write to  outfd  is  at?

                     tempted.

       sysseek [ -u fd ] [ -w start|end|current ] offset

              The  current file position at which future reads and writes will

              take place is adjusted to the specified byte offset. The  offset

              is evaluated as a math expression. The -u option allows the file

              descriptor to be specified. By default the offset  is  specified

              relative to the start or the file but, with the -w option, it is

              possible to specify that the offset should be  relative  to  the

              current position or the end of the file.

       syswrite [ -c countvar ] [ -o outfd ] data

              The  data (a single string of bytes) are written to the file de?

              scriptor outfd, or 1 if that is not given, using the write  sys?

              tem  call.   Multiple  write operations may be used if the first

              does not write all the data.

              If countvar is given, the number of byte written  is  stored  in

              the parameter named by countvar; this may not be the full length

              of data if an error occurred.

              The error EINTR (interrupted system call) is handled  internally

              by  retrying;  otherwise  an error causes the command to return.

              For example, if the file descriptor is set to non-blocking  out?

              put,  an  error EAGAIN (on some systems, EWOULDBLOCK) may result

              in the command returning early.

              The return status may be 0 for success, 1 for an  error  in  the Page 56/89



              parameters  to  the  command, or 2 for an error on the write; no

              error message is printed in the last case, but the parameter ER?

              RNO will reflect the error that occurred.

       zsystem flock [ -t timeout ] [ -f var ] [-er] file

       zsystem flock -u fd_expr

              The  builtin  zsystem's  subcommand flock performs advisory file

              locking (via the fcntl(2) system call) over the entire  contents

              of  the given file.  This form of locking requires the processes

              accessing the file to cooperate; its most obvious use is between

              two instances of the shell itself.

              In  the  first form the named file, which must already exist, is

              locked by opening a file descriptor to the file and  applying  a

              lock to the file descriptor.  The lock terminates when the shell

              process that created the lock exits; it is therefore often  con?

              venient to create file locks within subshells, since the lock is

              automatically released when the subshell exits.  Note  that  use

              of  the print builtin with the -u option will, as a side effect,

              release the lock, as will redirection to the file in  the  shell

              holding  the  lock.   To  work  around this use a subshell, e.g.

              `(print message) >> file'.  Status 0 is  returned  if  the  lock

              succeeds, else status 1.

              In  the  second form the file descriptor given by the arithmetic

              expression fd_expr is closed, releasing a lock.   The  file  de?

              scriptor  can  be  queried by using the `-f var' form during the

              lock; on a successful lock, the shell variable var is set to the

              file  descriptor used for locking.  The lock will be released if

              the file descriptor is closed by any other  means,  for  example

              using `exec {var}>&-'; however, the form described here performs

              a safety check that the file descriptor is in use for file lock?

              ing.

              By default the shell waits indefinitely for the lock to succeed.

              The option -t timeout specifies a timeout for the lock  in  sec?

              onds; currently this must be an integer.  The shell will attempt Page 57/89



              to lock the file once a second during this period.  If  the  at?

              tempt times out, status 2 is returned.

              If  the  option -e is given, the file descriptor for the lock is

              preserved when the shell uses exec to start a new process;  oth?

              erwise it is closed at that point and the lock released.

              If  the option -r is given, the lock is only for reading, other?

              wise it is for reading and  writing.   The  file  descriptor  is

              opened accordingly.

       zsystem supports subcommand

              The  builtin zsystem's subcommand supports tests whether a given

              subcommand is supported.  It returns status 0 if so, else status

              1.   It  operates silently unless there was a syntax error (i.e.

              the wrong number of arguments), in which case status 255 is  re?

              turned.  Status 1 can indicate one of two things:  subcommand is

              known but not supported by the current operating system, or sub?

              command  is not known (possibly because this is an older version

              of the shell before it was implemented).

   Math Functions

       systell(fd)

              The systell math function returns the current file position  for

              the file descriptor passed as an argument.

   Parameters

       errnos A  readonly  array of the names of errors defined on the system.

              These are typically macros defined in C by including the  system

              header  file  errno.h.  The index of each name (assuming the op?

              tion KSH_ARRAYS is unset) corresponds to the error number.   Er?

              ror  numbers  num before the last known error which have no name

              are given the name Enum in the array.

              Note that aliases for errors are not handled; only the canonical

              name is used.

       sysparams

              A readonly associative array.  The keys are:

              pid    Returns  the  process  ID of the current process, even in Page 58/89



                     subshells.  Compare $$, which returns the process  ID  of

                     the main shell process.

              ppid   Returns  the  process  ID  of  the  parent of the current

                     process, even in subshells.  Compare $PPID, which returns

                     the process ID of the parent of the main shell process.

              procsubstpid

                     Returns  the  process  ID of the last process started for

                     process substitution, i.e. the <(...) and  >(...)  expan?

                     sions.

THE ZSH/NET/TCP MODULE

       The zsh/net/tcp module makes available one builtin command:

       ztcp [ -acflLtv ] [ -d fd ] [ args ]

              ztcp is implemented as a builtin to allow full use of shell com?

              mand line editing, file I/O, and job control mechanisms.

              If ztcp is run with no options, it will output the  contents  of

              its session table.

              If  it  is  run with only the option -L, it will output the con?

              tents of the session table in a format  suitable  for  automatic

              parsing.   The option is ignored if given with a command to open

              or close a session.  The output consists of a set of lines,  one

              per session, each containing the following elements separated by

              spaces:

              File descriptor

                     The file descriptor in use for the connection.  For  nor?

                     mal  inbound (I) and outbound (O) connections this may be

                     read and written by the usual shell mechanisms.  However,

                     it should only be close with `ztcp -c'.

              Connection type

                     A letter indicating how the session was created:

                     Z      A session created with the zftp command.

                     L      A connection opened for listening with `ztcp -l'.

                     I      An inbound connection accepted with `ztcp -a'.

                     O      An  outbound  connection  created  with `ztcp host Page 59/89



                            ...'.

              The local host

                     This is usually set to an all-zero IP address as the  ad?

                     dress of the localhost is irrelevant.

              The local port

                     This  is  likely  to be zero unless the connection is for

                     listening.

              The remote host

                     This is the fully qualified domain name of the  peer,  if

                     available,  else an IP address.  It is an all-zero IP ad?

                     dress for a session opened for listening.

              The remote port

                     This is zero for a connection opened for listening.

   Outbound Connections

       ztcp [ -v ] [ -d fd ] host [ port ]

              Open a new TCP connection to host.  If the port is  omitted,  it

              will  default  to  port 23.  The connection will be added to the

              session table and the shell parameter REPLY will be set  to  the

              file descriptor associated with that connection.

              If  -d  is  specified,  its argument will be taken as the target

              file descriptor for the connection.

              In order to elicit more verbose output, use -v.

   Inbound Connections

       ztcp -l [ -v ] [ -d fd ] port

              ztcp -l will open a socket listening on TCP  port.   The  socket

              will be added to the session table and the shell parameter REPLY

              will be set to the file descriptor  associated  with  that  lis?

              tener.

              If  -d  is  specified,  its argument will be taken as the target

              file descriptor for the connection.

              In order to elicit more verbose output, use -v.

       ztcp -a [ -tv ] [ -d targetfd ] listenfd

              ztcp -a will accept an incoming connection to the  port  associ? Page 60/89



              ated with listenfd.  The connection will be added to the session

              table and the shell parameter REPLY will be set to the file  de?

              scriptor associated with the inbound connection.

              If  -d  is  specified,  its argument will be taken as the target

              file descriptor for the connection.

              If -t is specified, ztcp will return if no  incoming  connection

              is pending.  Otherwise it will wait for one.

              In order to elicit more verbose output, use -v.

   Closing Connections

       ztcp -cf [ -v ] [ fd ]

       ztcp -c [ -v ] [ fd ]

              ztcp  -c  will  close the socket associated with fd.  The socket

              will be removed from the session table.  If fd is not specified,

              ztcp will close everything in the session table.

              Normally, sockets registered by zftp (see zshmodules(1) ) cannot

              be closed this way.  In order to force such a socket closed, use

              -f.

              In order to elicit more verbose output, use -v.

   Example

       Here  is  how  to create a TCP connection between two instances of zsh.

       We need to pick an unassigned port; here we  use  the  randomly  chosen

       5123.

       On host1,

              zmodload zsh/net/tcp

              ztcp -l 5123

              listenfd=$REPLY

              ztcp -a $listenfd

              fd=$REPLY

       The  second from last command blocks until there is an incoming connec?

       tion.

       Now create a connection from host2 (which may, of course, be  the  same

       machine):

              zmodload zsh/net/tcp Page 61/89



              ztcp host1 5123

              fd=$REPLY

       Now  on  each  host,  $fd contains a file descriptor for talking to the

       other.  For example, on host1:

              print This is a message >&$fd

       and on host2:

              read -r line <&$fd; print -r - $line

       prints `This is a message'.

       To tidy up, on host1:

              ztcp -c $listenfd

              ztcp -c $fd

       and on host2

              ztcp -c $fd

THE ZSH/TERMCAP MODULE

       The zsh/termcap module makes available one builtin command:

       echotc cap [ arg ... ]

              Output the termcap value corresponding to  the  capability  cap,

              with optional arguments.

       The zsh/termcap module makes available one parameter:

       termcap

              An associative array that maps termcap capability codes to their

              values.

THE ZSH/TERMINFO MODULE

       The zsh/terminfo module makes available one builtin command:

       echoti cap [ arg ]

              Output the terminfo value corresponding to the  capability  cap,

              instantiated with arg if applicable.

       The zsh/terminfo module makes available one parameter:

       terminfo

              An  associative  array  that  maps  terminfo capability names to

              their values.

THE ZSH/ZFTP MODULE

       The zsh/zftp module makes available one builtin command: Page 62/89



       zftp subcommand [ args ]

              The zsh/zftp module is a client for FTP  (file  transfer  proto?

              col).  It is implemented as a builtin to allow full use of shell

              command line editing, file I/O, and job control mechanisms.  Of?

              ten,  users  will access it via shell functions providing a more

              powerful interface; a set is provided with the zsh  distribution

              and is described in zshzftpsys(1).  However, the zftp command is

              entirely usable in its own right.

              All commands consist of the command name zftp  followed  by  the

              name  of a subcommand.  These are listed below.  The return sta?

              tus of each subcommand is supposed to  reflect  the  success  or

              failure of the remote operation.  See a description of the vari?

              able ZFTP_VERBOSE for more information on how responses from the

              server may be printed.

   Subcommands

       open host[:port] [ user [ password [ account ] ] ]

              Open  a  new  FTP  session  to  host, which may be the name of a

              TCP/IP connected host or an IP number in the standard dot  nota?

              tion.   If the argument is in the form host:port, open a connec?

              tion to TCP port port instead of the standard FTP port 21.  This

              may  be the name of a TCP service or a number:  see the descrip?

              tion of ZFTP_PORT below for more information.

              If IPv6 addresses in colon format are used, the host  should  be

              surrounded  by quoted square brackets to distinguish it from the

              port, for example '[fe80::203:baff:fe02:8b56]'.  For consistency

              this is allowed with all forms of host.

              Remaining  arguments  are  passed to the login subcommand.  Note

              that if no arguments beyond host are supplied, open will not au?

              tomatically  call  login.   If no arguments at all are supplied,

              open will use the parameters set by the params subcommand.

              After  a  successful  open,  the  shell   variables   ZFTP_HOST,

              ZFTP_PORT,  ZFTP_IP  and  ZFTP_SYSTEM  are available; see `Vari?

              ables' below. Page 63/89



       login [ name [ password [ account ] ] ]

       user [ name [ password [ account ] ] ]

              Login the user name with parameters password and  account.   Any

              of the parameters can be omitted, and will be read from standard

              input if needed (name is always needed).  If standard input is a

              terminal,  a prompt for each one will be printed on standard er?

              ror and password will not be echoed.  If any of  the  parameters

              are not used, a warning message is printed.

              After   a  successful  login,  the  shell  variables  ZFTP_USER,

              ZFTP_ACCOUNT and ZFTP_PWD are available; see `Variables' below.

              This command may be re-issued when a user is already logged  in,

              and the server will first be reinitialized for a new user.

       params [ host [ user [ password [ account ] ] ] ]

       params -

              Store  the given parameters for a later open command with no ar?

              guments.  Only those given on the command line  will  be  remem?

              bered.   If no arguments are given, the parameters currently set

              are printed, although the password will  appear  as  a  line  of

              stars;  the return status is one if no parameters were set, zero

              otherwise.

              Any of the parameters may be specified as a `?', which may  need

              to  be quoted to protect it from shell expansion.  In this case,

              the appropriate parameter will be read from stdin  as  with  the

              login  subcommand,  including  special handling of password.  If

              the `?' is followed by a string, that is used as the prompt  for

              reading the parameter instead of the default message (any neces?

              sary punctuation and whitespace should be included at the end of

              the  prompt).   The  first letter of the parameter (only) may be

              quoted with a `\'; hence an argument "\\$word"  guarantees  that

              the string from the shell parameter $word will be treated liter?

              ally, whether or not it begins with a `?'.

              If instead a single `-' is given, the  existing  parameters,  if

              any,  are deleted.  In that case, calling open with no arguments Page 64/89



              will cause an error.

              The list of parameters is not deleted after a close, however  it

              will be deleted if the zsh/zftp module is unloaded.

              For example,

                     zftp params ftp.elsewhere.xx juser '?Password for juser: '

              will store the host ftp.elsewhere.xx and the user juser and then

              prompt the user for the corresponding password  with  the  given

              prompt.

       test   Test  the  connection;  if  the  server has reported that it has

              closed the connection (maybe due to a timeout), return status 2;

              if  no  connection was open anyway, return status 1; else return

              status 0.  The test subcommand is silent,  apart  from  messages

              printed by the $ZFTP_VERBOSE mechanism, or error messages if the

              connection closes.  There is no network overhead for this test.

              The test is only supported on systems with either the  select(2)

              or poll(2) system calls; otherwise the message `not supported on

              this system' is printed instead.

              The test subcommand will automatically be called at the start of

              any  other  subcommand for the current session when a connection

              is open.

       cd directory

              Change the remote directory to directory.  Also alters the shell

              variable ZFTP_PWD.

       cdup   Change  the  remote directory to the one higher in the directory

              tree.  Note that cd .. will also work correctly on non-UNIX sys?

              tems.

       dir [ arg ... ]

              Give  a (verbose) listing of the remote directory.  The args are

              passed directly to the server. The command's behaviour is imple?

              mentation  dependent, but a UNIX server will typically interpret

              args as arguments to the ls command and with no arguments return

              the  result of `ls -l'. The directory is listed to standard out?

              put. Page 65/89



       ls [ arg ... ]

              Give a (short) listing of the remote directory.   With  no  arg,

              produces a raw list of the files in the directory, one per line.

              Otherwise, up to vagaries of the server implementation,  behaves

              similar to dir.

       type [ type ]

              Change  the  type for the transfer to type, or print the current

              type if type is absent.  The allowed values are `A' (ASCII), `I'

              (Image, i.e. binary), or `B' (a synonym for `I').

              The FTP default for a transfer is ASCII.  However, if zftp finds

              that the remote host is a UNIX machine with 8-bit byes, it  will

              automatically  switch  to  using  binary for file transfers upon

              open.  This can subsequently be overridden.

              The transfer type is only passed to the remote host when a  data

              connection  is  established;  this  command  involves no network

              overhead.

       ascii  The same as type A.

       binary The same as type I.

       mode [ S | B ]

              Set the mode type to stream (S) or block (B).   Stream  mode  is

              the default; block mode is not widely supported.

       remote file ...

       local [ file ... ]

              Print the size and last modification time of the remote or local

              files.  If there is more than one item on the list, the name  of

              the  file  is printed first.  The first number is the file size,

              the second is the last modification time of the file in the for?

              mat  CCYYMMDDhhmmSS  consisting of year, month, date, hour, min?

              utes and seconds in GMT.  Note that this format,  including  the

              length, is guaranteed, so that time strings can be directly com?

              pared via the [[ builtin's < and > operators, even if  they  are

              too long to be represented as integers.

              Not  all servers support the commands for retrieving this infor? Page 66/89



              mation.  In that case, the remote command will print nothing and

              return status 2, compared with status 1 for a file not found.

              The  local  command  (but  not remote) may be used with no argu?

              ments, in which case the information comes from  examining  file

              descriptor zero.  This is the same file as seen by a put command

              with no further redirection.

       get file ...

              Retrieve all files from the server, concatenating them and send?

              ing them to standard output.

       put file ...

              For  each file, read a file from standard input and send that to

              the remote host with the given name.

       append file ...

              As put, but if the remote file already exists, data is  appended

              to it instead of overwriting it.

       getat file point

       putat file point

       appendat file point

              Versions of get, put and append which will start the transfer at

              the given point in the remote file.  This is useful for  append?

              ing  to an incomplete local file.  However, note that this abil?

              ity is not universally supported by servers (and  is  not  quite

              the behaviour specified by the standard).

       delete file ...

              Delete the list of files on the server.

       mkdir directory

              Create a new directory directory on the server.

       rmdir directory

              Delete the directory directory  on the server.

       rename old-name new-name

              Rename file old-name to new-name on the server.

       site arg ...

              Send  a  host-specific command to the server.  You will probably Page 67/89



              only need this if instructed by the server to use it.

       quote arg ...

              Send the raw FTP command sequence to the server.  You should  be

              familiar  with  the  FTP command set as defined in RFC959 before

              doing this.  Useful commands may include STAT  and  HELP.   Note

              also  the  mechanism for returning messages as described for the

              variable ZFTP_VERBOSE below, in  particular  that  all  messages

              from the control connection are sent to standard error.

       close

       quit   Close the current data connection.  This unsets the shell param?

              eters ZFTP_HOST,  ZFTP_PORT,  ZFTP_IP,  ZFTP_SYSTEM,  ZFTP_USER,

              ZFTP_ACCOUNT, ZFTP_PWD, ZFTP_TYPE and ZFTP_MODE.

       session [ sessname ]

              Allows  multiple  FTP  sessions to be used at once.  The name of

              the session is an arbitrary string of  characters;  the  default

              session  is called `default'.  If this command is called without

              an argument, it will list all the current sessions; with an  ar?

              gument,  it  will  either  switch to the existing session called

              sessname, or create a new session of that name.

              Each session remembers the status of the connection, the set  of

              connection-specific  shell parameters (the same set as are unset

              when a connection closes, as given in the description of close),

              and  any  user  parameters specified with the params subcommand.

              Changing to a previous session restores those  values;  changing

              to a new session initialises them in the same way as if zftp had

              just been loaded.  The name of the current session is  given  by

              the parameter ZFTP_SESSION.

       rmsession [ sessname ]

              Delete a session; if a name is not given, the current session is

              deleted.  If the current session is deleted, the earliest exist?

              ing  session becomes the new current session, otherwise the cur?

              rent session is not changed.  If the session  being  deleted  is

              the  only one, a new session called `default' is created and be? Page 68/89



              comes the current session; note that this is a new session  even

              if  the  session  being  deleted is also called `default'. It is

              recommended that sessions not be deleted while  background  com?

              mands which use zftp are still active.

   Parameters

       The  following  shell  parameters  are used by zftp.  Currently none of

       them are special.

       ZFTP_TMOUT

              Integer.  The time in seconds to wait for a network operation to

              complete before returning an error.  If this is not set when the

              module is loaded, it will be given  the  default  value  60.   A

              value  of  zero  turns off timeouts.  If a timeout occurs on the

              control connection it will be closed.  Use  a  larger  value  if

              this occurs too frequently.

       ZFTP_IP

              Readonly.  The IP address of the current connection in dot nota?

              tion.

       ZFTP_HOST

              Readonly.  The hostname of the current remote  server.   If  the

              host  was  opened  as  an IP number, ZFTP_HOST contains that in?

              stead; this saves the overhead for a name lookup, as IP  numbers

              are most commonly used when a nameserver is unavailable.

       ZFTP_PORT

              Readonly.   The  number of the remote TCP port to which the con?

              nection is open (even if the port was originally specified as  a

              named service).  Usually this is the standard FTP port, 21.

              In  the unlikely event that your system does not have the appro?

              priate conversion functions, this appears in network byte order.

              If  your  system is little-endian, the port then consists of two

              swapped bytes and the standard port will be  reported  as  5376.

              In  that  case, numeric ports passed to zftp open will also need

              to be in this format.

       ZFTP_SYSTEM Page 69/89



              Readonly.  The system type string returned by the server in  re?

              sponse  to  an FTP SYST request.  The most interesting case is a

              string beginning "UNIX Type: L8", which ensures maximum compati?

              bility with a local UNIX host.

       ZFTP_TYPE

              Readonly.   The  type to be used for data transfers , either `A'

              or `I'.   Use the type subcommand to change this.

       ZFTP_USER

              Readonly.  The username currently logged in, if any.

       ZFTP_ACCOUNT

              Readonly.  The account name of the current user, if  any.   Most

              servers do not require an account name.

       ZFTP_PWD

              Readonly.  The current directory on the server.

       ZFTP_CODE

              Readonly.   The  three digit code of the last FTP reply from the

              server as a string.  This can still be read after the connection

              is closed, and is not changed when the current session changes.

       ZFTP_REPLY

              Readonly.   The  last line of the last reply sent by the server.

              This can still be read after the connection is  closed,  and  is

              not changed when the current session changes.

       ZFTP_SESSION

              Readonly.  The name of the current FTP session; see the descrip?

              tion of the session subcommand.

       ZFTP_PREFS

              A string of preferences for altering aspects  of  zftp's  behav?

              iour.  Each preference is a single character.  The following are

              defined:

              P      Passive:  attempt to make the remote server initiate data

                     transfers.  This is slightly more efficient than sendport

                     mode.  If the letter S occurs later in the  string,  zftp

                     will use sendport mode if passive mode is not available. Page 70/89



              S      Sendport:   initiate  transfers  by the FTP PORT command.

                     If this occurs before any P in the string,  passive  mode

                     will never be attempted.

              D      Dumb:   use  only the bare minimum of FTP commands.  This

                     prevents the variables ZFTP_SYSTEM and ZFTP_PWD from  be?

                     ing  set,  and will mean all connections default to ASCII

                     type.  It may prevent ZFTP_SIZE from being set  during  a

                     transfer  if  the  server  does  not send it anyway (many

                     servers do).

              If ZFTP_PREFS is not set when zftp is loaded, it will be set  to

              a default of `PS', i.e. use passive mode if available, otherwise

              fall back to sendport mode.

       ZFTP_VERBOSE

              A string of digits between 0 and 5 inclusive,  specifying  which

              responses  from  the server should be printed.  All responses go

              to standard error.  If any of the numbers 1 to 5 appear  in  the

              string, raw responses from the server with reply codes beginning

              with that digit will be printed to standard  error.   The  first

              digit of the three digit reply code is defined by RFC959 to cor?

              respond to:

              1.     A positive preliminary reply.

              2.     A positive completion reply.

              3.     A positive intermediate reply.

              4.     A transient negative completion reply.

              5.     A permanent negative completion reply.

              It should be noted that, for unknown reasons, the reply `Service

              not  available',  which  forces  termination of a connection, is

              classified as 421, i.e. `transient negative', an interesting in?

              terpretation of the word `transient'.

              The  code 0 is special:  it indicates that all but the last line

              of multiline replies read from the server  will  be  printed  to

              standard  error  in  a processed format.  By convention, servers

              use this mechanism for sending information for the user to read. Page 71/89



              The  appropriate  reply  code,  if it matches the same response,

              takes priority.

              If ZFTP_VERBOSE is not set when zftp is loaded, it will  be  set

              to  the  default value 450, i.e., messages destined for the user

              and all errors will be printed.  A  null  string  is  valid  and

              specifies that no messages should be printed.

   Functions

       zftp_chpwd

              If this function is set by the user, it is called every time the

              directory changes on the server, including when a user is logged

              in, or when a connection is closed.  In the last case, $ZFTP_PWD

              will be unset; otherwise it will reflect the new directory.

       zftp_progress

              If this function is set by the user, it will be called during  a

              get,  put or append operation each time sufficient data has been

              received from the host.  During a get, the data is sent to stan?

              dard  output,  so it is vital that this function should write to

              standard error or directly to the terminal, not to standard out?

              put.

              When it is called with a transfer in progress, the following ad?

              ditional shell parameters are set:

              ZFTP_FILE

                     The name of the remote file being transferred from or to.

              ZFTP_TRANSFER

                     A G for a get operation and a P for a put operation.

              ZFTP_SIZE

                     The total size of the complete  file  being  transferred:

                     the  same  as  the first value provided by the remote and

                     local subcommands for a particular file.  If  the  server

                     cannot  supply  this  value  for  a remote file being re?

                     trieved, it will not be set.  If input is from a pipe the

                     value  may  be  incorrect and correspond simply to a full

                     pipe buffer. Page 72/89



              ZFTP_COUNT

                     The amount of data so far transferred; a  number  between

                     zero  and $ZFTP_SIZE, if that is set.  This number is al?

                     ways available.

              The function is initially called with ZFTP_TRANSFER  set  appro?

              priately and ZFTP_COUNT set to zero.  After the transfer is fin?

              ished,  the  function  will  be  called  one  more   time   with

              ZFTP_TRANSFER set to GF or PF, in case it wishes to tidy up.  It

              is  otherwise  never  called  twice  with  the  same  value   of

              ZFTP_COUNT.

              Sometimes  the progress meter may cause disruption.  It is up to

              the user to decide whether the function should be defined and to

              use unfunction when necessary.

   Problems

       A  connection may not be opened in the left hand side of a pipe as this

       occurs in a subshell and the file information is  not  updated  in  the

       main shell.  In the case of type or mode changes or closing the connec?

       tion in a subshell, the information is returned but variables  are  not

       updated until the next call to zftp.  Other status changes in subshells

       will not be reflected by changes to the variables (but should be other?

       wise harmless).

       Deleting  sessions while a zftp command is active in the background can

       have unexpected effects, even if it does  not  use  the  session  being

       deleted.   This  is because all shell subprocesses share information on

       the state of all connections, and deleting a session changes the order?

       ing of that information.

       On  some operating systems, the control connection is not valid after a

       fork(), so that operations in subshells, on the left  hand  side  of  a

       pipeline,  or  in  the  background are not possible, as they should be.

       This is presumably a bug in the operating system.

THE ZSH/ZLE MODULE

       The zsh/zle module contains the Zsh Line Editor.  See zshzle(1).

THE ZSH/ZLEPARAMETER MODULE Page 73/89



       The zsh/zleparameter module defines two special parameters that can  be

       used  to  access  internal information of the Zsh Line Editor (see zsh?

       zle(1)).

       keymaps

              This array contains the names of the keymaps currently defined.

       widgets

              This associative array contains one entry per widget.  The  name

              of  the  widget is the key and the value gives information about

              the widget. It is either

                the string `builtin' for builtin widgets,

                a string of the form `user:name' for user-defined widgets,

                  where name is the name of the  shell  function  implementing

              the widget,

                a string of the form `completion:type:name'

                  for completion widgets,

                or  a  null  value if the widget is not yet fully defined.  In

              the penultimate case, type is the name of the builtin widget the

              completion  widget imitates in its behavior and name is the name

              of the shell function implementing the completion widget.

THE ZSH/ZPROF MODULE

       When loaded, the zsh/zprof causes shell functions to be profiled.   The

       profiling  results  can be obtained with the zprof builtin command made

       available by this module.  There is no way to turn profiling off  other

       than unloading the module.

       zprof [ -c ]

              Without the -c option, zprof lists profiling results to standard

              output.  The format is  comparable  to  that  of  commands  like

              gprof.

              At  the  top  there is a summary listing all functions that were

              called at least once.  This summary is sorted in decreasing  or?

              der  of the amount of time spent in each.  The lines contain the

              number of the function in order, which is used in other parts of

              the  list  in  suffixes  of the form `[num]', then the number of Page 74/89



              calls made to the function.  The next  three  columns  list  the

              time  in milliseconds spent in the function and its descendants,

              the average time in milliseconds spent in the function  and  its

              descendants  per  call  and  the percentage of time spent in all

              shell functions used in this function and its descendants.   The

              following  three columns give the same information, but counting

              only the time spent in the function itself.   The  final  column

              shows the name of the function.

              After  the  summary,  detailed  information about every function

              that was invoked is listed, sorted in decreasing  order  of  the

              amount of time spent in each function and its descendants.  Each

              of these entries consists of descriptions for the functions that

              called  the  function  described,  the  function itself, and the

              functions that were called from it.   The  description  for  the

              function itself has the same format as in the summary (and shows

              the same information).  The other lines don't show the number of

              the  function at the beginning and have their function named in?

              dented to make it easier to distinguish  the  line  showing  the

              function described in the section from the surrounding lines.

              The  information shown in this case is almost the same as in the

              summary, but only refers to the call hierarchy being  displayed.

              For example, for a calling function the column showing the total

              running time lists the time spent in the described function  and

              its  descendants only for the times when it was called from that

              particular calling function.  Likewise, for a  called  function,

              this  columns  lists the total time spent in the called function

              and its descendants only for the times when it was  called  from

              the function described.

              Also  in  this case, the column showing the number of calls to a

              function also shows a slash and then the total number of invoca?

              tions made to the called function.

              As  long  as  the  zsh/zprof module is loaded, profiling will be

              done and multiple invocations of the zprof builtin command  will Page 75/89



              show the times and numbers of calls since the module was loaded.

              With the -c option, the zprof builtin command will reset its in?

              ternal counters and will not show the listing.

THE ZSH/ZPTY MODULE

       The zsh/zpty module offers one builtin:

       zpty [ -e ] [ -b ] name [ arg ... ]

              The  arguments  following  name are concatenated with spaces be?

              tween, then executed as a command, as  if  passed  to  the  eval

              builtin.   The command runs under a newly assigned pseudo-termi?

              nal; this is useful for running commands non-interactively which

              expect  an interactive environment.  The name is not part of the

              command, but is used to refer to this command in later calls  to

              zpty.

              With  the -e option, the pseudo-terminal is set up so that input

              characters are echoed.

              With the -b option, input to and output from the pseudo-terminal

              are made non-blocking.

              The shell parameter REPLY is set to the file descriptor assigned

              to the master side of the pseudo-terminal.  This allows the ter?

              minal  to  be  monitored  with ZLE descriptor handlers (see zsh?

              zle(1)) or  manipulated  with  sysread  and  syswrite  (see  THE

              ZSH/SYSTEM  MODULE  in  zshmodules(1)).  Warning: Use of sysread

              and syswrite is not recommended; use zpty -r and zpty -w  unless

              you know exactly what you are doing.

       zpty -d [ name ... ]

              The  second form, with the -d option, is used to delete commands

              previously started, by supplying a list of their names.   If  no

              name  is  given,  all  commands are deleted.  Deleting a command

              causes the HUP signal to be sent to the corresponding process.

       zpty -w [ -n ] name [ string ... ]

              The -w option can be used to send the to command name the  given

              strings as input (separated by spaces).  If the -n option is not

              given, a newline is added at the end. Page 76/89



              If no string is provided, the standard input is  copied  to  the

              pseudo-terminal;  this may stop before copying the full input if

              the pseudo-terminal is non-blocking.  The exact input is  always

              copied: the -n option is not applied.

              Note  that the command under the pseudo-terminal sees this input

              as if it were typed, so beware when sending special  tty  driver

              characters such as word-erase, line-kill, and end-of-file.

       zpty -r [ -mt ] name [ param [ pattern ] ]

              The  -r  option  can  be  used to read the output of the command

              name.  With only a name argument, the output read is  copied  to

              the  standard  output.  Unless the pseudo-terminal is non-block?

              ing, copying continues until the command under the pseudo-termi?

              nal  exits; when non-blocking, only as much output as is immedi?

              ately available is copied.  The return status  is  zero  if  any

              output is copied.

              When  also  given a param argument, at most one line is read and

              stored in the parameter named param.  Less than a full line  may

              be read if the pseudo-terminal is non-blocking.  The return sta?

              tus is zero if at least one character is stored in param.

              If a pattern is given as well, output is read  until  the  whole

              string  read matches the pattern, even in the non-blocking case.

              The return status is zero if the string read  matches  the  pat?

              tern,  or  if  the command has exited but at least one character

              could still be read.  If the option -m is  present,  the  return

              status is zero only if the pattern matches.  As of this writing,

              a maximum of one megabyte of output can be consumed this way; if

              a full megabyte is read without matching the pattern, the return

              status is non-zero.

              In all cases, the return status is non-zero if nothing could  be

              read, and is 2 if this is because the command has finished.

              If  the  -r  option  is  combined with the -t option, zpty tests

              whether output is available before trying to read.  If no output

              is  available, zpty immediately returns the status 1.  When used Page 77/89



              with a pattern, the behaviour on a failed  poll  is  similar  to

              when  the  command  has  exited:  the return value is zero if at

              least one character could still be  read  even  if  the  pattern

              failed to match.

       zpty -t name

              The  -t option without the -r option can be used to test whether

              the command name is still running.  It returns a zero status  if

              the command is running and a non-zero value otherwise.

       zpty [ -L ]

              The  last  form, without any arguments, is used to list the com?

              mands currently defined.  If the -L option  is  given,  this  is

              done in the form of calls to the zpty builtin.

THE ZSH/ZSELECT MODULE

       The zsh/zselect module makes available one builtin command:

       zselect [ -rwe ] [ -t timeout ] [ -a array ] [ -A assoc ] [ fd ... ]

              The  zselect builtin is a front-end to the `select' system call,

              which blocks until a file descriptor is  ready  for  reading  or

              writing,  or  has  an error condition, with an optional timeout.

              If this is not available on your system, the command  prints  an

              error  message and returns status 2 (normal errors return status

              1).  For more information, see your  systems  documentation  for

              select(3).   Note  there is no connection with the shell builtin

              of the same name.

              Arguments and options may be intermingled in any order.  Non-op?

              tion arguments are file descriptors, which must be decimal inte?

              gers.  By default, file descriptors are to be tested  for  read?

              ing,  i.e. zselect will return when data is available to be read

              from the file descriptor, or more precisely, when a read  opera?

              tion  from  the  file descriptor will not block.  After a -r, -w

              and -e, the given file descriptors are to be tested for reading,

              writing,  or  error  conditions.  These options and an arbitrary

              list of file descriptors may be given in any order.

              (The presence of an `error condition' is not well defined in the Page 78/89



              documentation  for  many  implementations  of  the select system

              call.  According to recent versions of the POSIX  specification,

              it  is really an exception condition, of which the only standard

              example is out-of-band data received on a socket.  So zsh  users

              are unlikely to find the -e option useful.)

              The  option  `-t timeout' specifies a timeout in hundredths of a

              second.  This may be zero, in which case  the  file  descriptors

              will  simply  be polled and zselect will return immediately.  It

              is possible to call zselect  with  no  file  descriptors  and  a

              non-zero  timeout  for  use  as  a finer-grained replacement for

              `sleep'; note, however, the return status  is  always  1  for  a

              timeout.

              The  option `-a array' indicates that array should be set to in?

              dicate the file descriptor(s) which are ready.  If the option is

              not  given,  the array reply will be used for this purpose.  The

              array will contain a string similar to the  arguments  for  zse?

              lect.  For example,

                     zselect -t 0 -r 0 -w 1

              might return immediately with status 0 and $reply containing `-r

              0 -w 1' to show that both file descriptors are ready for the re?

              quested operations.

              The option `-A assoc' indicates that the associative array assoc

              should be set to  indicate  the  file  descriptor(s)  which  are

              ready.   This  option overrides the option -a, nor will reply be

              modified.  The keys of assoc are the file descriptors,  and  the

              corresponding values are any of the characters `rwe' to indicate

              the condition.

              The command returns status 0 if some file descriptors are  ready

              for  reading.  If the operation timed out, or a timeout of 0 was

              given and no file descriptors were ready, or there was an error,

              it  returns status 1 and the array will not be set (nor modified

              in any way).  If there was an error in the select operation  the

              appropriate error message is printed. Page 79/89



THE ZSH/ZUTIL MODULE

       The zsh/zutil module only adds some builtins:

       zstyle [ -L [ metapattern [ style ] ] ]

       zstyle [ -e | - | -- ] pattern style string ...

       zstyle -d [ pattern [ style ... ] ]

       zstyle -g name [ pattern [ style ] ]

       zstyle -{a|b|s} context style name [ sep ]

       zstyle -{T|t} context style [ string ... ]

       zstyle -m context style pattern

              This  builtin  command  is  used  to  define  and lookup styles.

              Styles are pairs of names and values, where the  values  consist

              of  any  number  of strings.  They are stored together with pat?

              terns and lookup is done by giving a string,  called  the  `con?

              text',  which  is  matched against the patterns.  The definition

              stored for the most specific pattern that matches  will  be  re?

              turned.

              A  pattern  is considered to be more specific than another if it

              contains more components (substrings separated by colons) or  if

              the  patterns for the components are more specific, where simple

              strings are considered to be more  specific  than  patterns  and

              complex  patterns  are  considered  to be more specific than the

              pattern `*'.  A `*' in the pattern will match zero or more char?

              acters  in the context; colons are not treated specially in this

              regard.  If two patterns are equally specific, the tie is broken

              in favour of the pattern that was defined first.

              Example

              For  example, to define your preferred form of precipitation de?

              pending on which city you're in, you might set the following  in

              your zshrc:

                     zstyle ':weather:europe:*' preferred-precipitation rain

                     zstyle ':weather:europe:germany:* preferred-precipitation none

                     zstyle ':weather:europe:germany:*:munich' preferred-precipitation snow

              Then,  the fictional `weather' plugin might run under the hood a Page 80/89



              command such as

                     zstyle -s ":weather:${continent}:${country}:${county}:${city}" preferred-precipitation REPLY

              in order to retrieve your preference into  the  scalar  variable

              $REPLY.

              Usage

              The forms that operate on patterns are the following.

              zstyle [ -L [ metapattern [ style ] ] ]

                     Without  arguments,  lists style definitions.  Styles are

                     shown in alphabetic order and patterns are shown  in  the

                     order zstyle will test them.

                     If the -L option is given, listing is done in the form of

                     calls to zstyle.  The optional first  argument,  metapat?

                     tern,  is  a  pattern  which  will be matched against the

                     string supplied as pattern when the  style  was  defined.

                     Note:  this  means,  for  example,  `zstyle  -L ":comple?

                     tion:*"' will match any supplied pattern beginning `:com?

                     pletion:',   not  just  ":completion:*":   use  ':comple?

                     tion:\*' to match that.   The  optional  second  argument

                     limits  the  output  to a specific style (not a pattern).

                     -L is not compatible with any other options.

              zstyle [ - | -- | -e ] pattern style string ...

                     Defines the given style for the pattern with the  strings

                     as  the  value.   If  the -e option is given, the strings

                     will be concatenated (separated by spaces)  and  the  re?

                     sulting  string  will be evaluated (in the same way as it

                     is done by the eval builtin command) when  the  style  is

                     looked  up.   In  this case the parameter `reply' must be

                     assigned to set the strings returned  after  the  evalua?

                     tion.   Before  evaluating the value, reply is unset, and

                     if it is still unset after the evaluation, the  style  is

                     treated as if it were not set.

              zstyle -d [ pattern [ style ... ] ]

                     Delete  style  definitions. Without arguments all defini? Page 81/89



                     tions are deleted, with a  pattern  all  definitions  for

                     that  pattern  are  deleted  and if any styles are given,

                     then only those styles are deleted for the pattern.

              zstyle -g name [ pattern [ style ] ]

                     Retrieve a style definition. The name is used as the name

                     of  an array in which the results are stored. Without any

                     further arguments, all  patterns  defined  are  returned.

                     With  a  pattern  the styles defined for that pattern are

                     returned and with both a pattern and a style,  the  value

                     strings of that combination is returned.

              The  other  forms  can  be  used to look up or test styles for a

              given context.

              zstyle -s context style name [ sep ]

                     The parameter name is set to the value of the  style  in?

                     terpreted  as  a  string.   If the value contains several

                     strings they are concatenated with spaces  (or  with  the

                     sep string if that is given) between them.

                     Return 0 if the style is set, 1 otherwise.

              zstyle -b context style name

                     The  value  is  stored  in name as a boolean, i.e. as the

                     string `yes' if the value has only one  string  and  that

                     string is equal to one of `yes', `true', `on', or `1'. If

                     the value is any  other  string  or  has  more  than  one

                     string, the parameter is set to `no'.

                     Return 0 if name is set to `yes', 1 otherwise.

              zstyle -a context style name

                     The  value  is stored in name as an array. If name is de?

                     clared as an associative array,  the first,  third,  etc.

                     strings  are  used  as the keys and the other strings are

                     used as the values.

                     Return 0 if the style is set, 1 otherwise.

              zstyle -t context style [ string ... ]

              zstyle -T context style [ string ... ] Page 82/89



                     Test the value of a style, i.e. the -t  option  only  re?

                     turns  a status (sets $?).  Without any string the return

                     status is zero if the style is defined for at  least  one

                     matching  pattern,  has only one string in its value, and

                     that is equal to one of `true', `yes', `on'  or  `1'.  If

                     any  strings  are given the status is zero if and only if

                     at least one of the strings is equal to at least  one  of

                     the  strings  in  the  value. If the style is defined but

                     doesn't match, the return status is 1. If  the  style  is

                     not defined, the status is 2.

                     The  -T option tests the values of the style like -t, but

                     it returns status zero (rather than 2) if  the  style  is

                     not defined for any matching pattern.

              zstyle -m context style pattern

                     Match a value. Returns status zero if the pattern matches

                     at least one of the strings in the value.

       zformat -f param format spec ...

       zformat -a array sep spec ...

              This builtin provides two different  forms  of  formatting.  The

              first form is selected with the -f option. In this case the for?

              mat string will be modified by replacing sequences starting with

              a  percent  sign  in  it with strings from the specs.  Each spec

              should be of the form `char:string' which will cause  every  ap?

              pearance of the sequence `%char' in format to be replaced by the

              string.  The `%' sequence may also contain optional minimum  and

              maximum  field  width  specifications  between  the  `%' and the

              `char' in the form `%min.maxc', i.e. the minimum field width  is

              given first and if the maximum field width is used, it has to be

              preceded by a dot.  Specifying a minimum field width  makes  the

              result  be  padded  with  spaces  to  the right if the string is

              shorter than the requested width.  Padding to the  left  can  be

              achieved by giving a negative minimum field width.  If a maximum

              field width is specified, the string  will  be  truncated  after Page 83/89



              that  many  characters.   After  all `%' sequences for the given

              specs have been processed, the resulting string is stored in the

              parameter param.

              The  %-escapes  also  understand ternary expressions in the form

              used by prompts.  The % is followed by a `(' and then  an  ordi?

              nary  format  specifier character as described above.  There may

              be a set of digits either before or after the `('; these specify

              a  test  number,  which  defaults to zero.  Negative numbers are

              also allowed.  An arbitrary delimiter character follows the for?

              mat  specifier, which is followed by a piece of `true' text, the

              delimiter character again, a piece of `false' text, and a  clos?

              ing  parenthesis.   The complete expression (without the digits)

              thus looks like `%(X.text1.text2)', except that the `.'  charac?

              ter  is  arbitrary.  The value given for the format specifier in

              the char:string expressions is evaluated as a  mathematical  ex?

              pression,  and  compared  with the test number.  If they are the

              same, text1 is output, else text2 is output.  A parenthesis  may

              be escaped in text2 as %).  Either of text1 or text2 may contain

              nested %-escapes.

              For example:

                     zformat -f REPLY "The answer is '%3(c.yes.no)'." c:3

              outputs "The answer is 'yes'." to REPLY since the value for  the

              format specifier c is 3, agreeing with the digit argument to the

              ternary expression.

              The second form, using the -a option, can be used  for  aligning

              strings.   Here,  the  specs  are of the form `left:right' where

              `left' and `right' are arbitrary  strings.   These  strings  are

              modified  by  replacing the colons by the sep string and padding

              the left strings with spaces  to  the  right  so  that  the  sep

              strings  in  the result (and hence the right strings after them)

              are all aligned if the strings are  printed  below  each  other.

              All  strings  without a colon are left unchanged and all strings

              with an empty right string have the trailing colon removed.   In Page 84/89



              both  cases the lengths of the strings are not used to determine

              how the other strings are to be aligned.  A colon  in  the  left

              string  can  be escaped with a backslash.  The resulting strings

              are stored in the array.

       zregexparse

              This implements some internals of the _regex_arguments function.

       zparseopts [ -D -E -F -K -M ] [ -a array ] [ -A assoc ] [ - ] spec ...

              This builtin simplifies the parsing of options in positional pa?

              rameters,  i.e. the set of arguments given by $*.  Each spec de?

              scribes one option and must be of the form `opt[=array]'.  If an

              option described by opt is found in the positional parameters it

              is copied into the array specified with the -a  option;  if  the

              optional  `=array'  is given, it is instead copied into that ar?

              ray, which should be declared as a normal array and never as  an

              associative array.

              Note  that  it  is an error to give any spec without an `=array'

              unless one of the -a or -A options is used.

              Unless the -E option is given, parsing stops at the first string

              that isn't described by one of the specs.  Even with -E, parsing

              always stops at a positional parameter equal to `-' or `--'. See

              also -F.

              The  opt  description  must be one of the following.  Any of the

              special characters can appear in the option name provided it  is

              preceded by a backslash.

              name

              name+  The  name  is  the name of the option without the leading

                     `-'.  To specify a GNU-style  long  option,  one  of  the

                     usual two leading `-' must be included in name; for exam?

                     ple, a `--file'  option  is  represented  by  a  name  of

                     `-file'.

                     If  a  `+'  appears after name, the option is appended to

                     array each time it is found in the positional parameters;

                     without the `+' only the last occurrence of the option is Page 85/89



                     preserved.

                     If one of these forms is used, the option takes no  argu?

                     ment,  so  parsing stops if the next positional parameter

                     does not also begin with `-' (unless  the  -E  option  is

                     used).

              name:

              name:-

              name:: If one or two colons are given, the option takes an argu?

                     ment; with one colon, the argument is mandatory and  with

                     two  colons  it is optional.  The argument is appended to

                     the array after the option itself.

                     An optional argument is put into the same  array  element

                     as the option name (note that this makes empty strings as

                     arguments indistinguishable).  A  mandatory  argument  is

                     added as a separate element unless the `:-' form is used,

                     in which case the argument is put into the same element.

                     A `+' as described above may appear between the name  and

                     the first colon.

              In  all  cases,  option-arguments must appear either immediately

              following the option in the same positional parameter or in  the

              next  one.  Even an optional argument may appear in the next pa?

              rameter, unless it begins with a `-'.  There is no special  han?

              dling  of `=' as with GNU-style argument parsers; given the spec

              `-foo:', the  positional  parameter  `--foo=bar'  is  parsed  as

              `--foo' with an argument of `=bar'.

              When  the  names  of two options that take no arguments overlap,

              the longest one wins, so that parsing for the specs `-foo  -foo?

              bar' (for example) is unambiguous. However, due to the aforemen?

              tioned handling of option-arguments, ambiguities may arise  when

              at  least  one  overlapping spec takes an argument, as in `-foo:

              -foobar'. In that case, the last matching spec wins.

              The options of zparseopts itself cannot be stacked because,  for

              example,  the  stack `-DEK' is indistinguishable from a spec for Page 86/89



              the GNU-style long option `--DEK'.  The  options  of  zparseopts

              itself are:

              -a array

                     As described above, this names the default array in which

                     to store the recognised options.

              -A assoc

                     If this is given, the options and their values  are  also

                     put  into  an  associative array with the option names as

                     keys and the arguments (if any) as the values.

              -D     If this option is given, all options  found  are  removed

                     from  the  positional  parameters of the calling shell or

                     shell function, up to but not including any not described

                     by  the  specs.   If  the  first such parameter is `-' or

                     `--', it is removed as well.  This is  similar  to  using

                     the shift builtin.

              -E     This  changes  the parsing rules to not stop at the first

                     string that isn't described by one of the specs.  It  can

                     be used to test for or (if used together with -D) extract

                     options and their arguments, ignoring all  other  options

                     and  arguments  that may be in the positional parameters.

                     As indicated above, parsing still stops at the first  `-'

                     or  `--'  not  described by a spec, but it is not removed

                     when used with -D.

              -F     If this option is given, zparseopts immediately stops  at

                     the  first  option-like parameter not described by one of

                     the specs, prints an error message, and returns status 1.

                     Removal  (-D)  and extraction (-E) are not performed, and

                     option arrays are not updated.  This provides basic vali?

                     dation for the given options.

                     Note  that the appearance in the positional parameters of

                     an option without its  required  argument  always  aborts

                     parsing  and  returns an error as described above regard?

                     less of whether this option is used. Page 87/89



              -K     With this option, the arrays specified with the -a option

                     and  with the `=array' forms are kept unchanged when none

                     of the specs for them is used.  Otherwise the entire  ar?

                     ray  is replaced when any of the specs is used.  Individ?

                     ual elements of associative arrays specified with the  -A

                     option  are  preserved  by -K.  This allows assignment of

                     default values to arrays before calling zparseopts.

              -M     This changes the assignment  rules  to  implement  a  map

                     among  equivalent  option  names.   If  any spec uses the

                     `=array' form, the string array  is  interpreted  as  the

                     name  of  another  spec, which is used to choose where to

                     store the values.  If no other spec is found, the  values

                     are  stored as usual.  This changes only the way the val?

                     ues are stored, not the way $* is parsed, so results  may

                     be  unpredictable if the `name+' specifier is used incon?

                     sistently.

              For example,

                     set -- -a -bx -c y -cz baz -cend

                     zparseopts a=foo b:=bar c+:=bar

              will have the effect of

                     foo=(-a)

                     bar=(-b x -c y -c z)

              The arguments from `baz' on will not be used.

              As an example for the -E option, consider:

                     set -- -a x -b y -c z arg1 arg2

                     zparseopts -E -D b:=bar

              will have the effect of

                     bar=(-b y)

                     set -- -a x -c z arg1 arg2

              I.e., the option -b and its arguments are taken from  the  posi?

              tional parameters and put into the array bar.

              The -M option can be used like this:

                     set -- -a -bx -c y -cz baz -cend Page 88/89



                     zparseopts -A bar -M a=foo b+: c:=b

              to have the effect of

                     foo=(-a)

                     bar=(-a '' -b xyz)

zsh 5.8                        February 14, 2020                 ZSHMODULES(1)

Page 89/89


