
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'zstd.1' command

$ man zstd.1

ZSTD(1) User Commands ZSTD(1)

NAME

 zstd - zstd, zstdmt, unzstd, zstdcat - Compress or decompress .zst

 files

SYNOPSIS

 zstdmt is equivalent to zstd -T0

 unzstd is equivalent to zstd -d

 zstdcat is equivalent to zstd -dcf

DESCRIPTION

 zstd is a fast lossless compression algorithm and data compression

 tool, with command line syntax similar to gzip (1) and xz (1). It is

 based on the LZ77 family, with further FSE & huff0 entropy stages. zstd

 offers highly configurable compression speed, with fast modes at > 200

 MB/s per core, and strong modes nearing lzma compression ratios. It

 also features a very fast decoder, with speeds > 500 MB/s per core.

 zstd command line syntax is generally similar to gzip, but features the

 following differences :

 ? Source files are preserved by default. It?s possible to remove them

 automatically by using the --rm command.

 ? When compressing a single file, zstd displays progress notifica?

 tions and result summary by default. Use -q to turn them off.

 ? zstd does not accept input from console, but it properly accepts

 stdin when it?s not the console. Page 1/16

 ? zstd displays a short help page when command line is an error. Use

 -q to turn it off.

 zstd compresses or decompresses each file according to the selected op?

 eration mode. If no files are given or file is -, zstd reads from stan?

 dard input and writes the processed data to standard output. zstd will

 refuse to write compressed data to standard output if it is a terminal

 : it will display an error message and skip the file. Similarly, zstd

 will refuse to read compressed data from standard input if it is a ter?

 minal.

 Unless --stdout or -o is specified, files are written to a new file

 whose name is derived from the source file name:

 ? When compressing, the suffix .zst is appended to the source file?

 name to get the target filename.

 ? When decompressing, the .zst suffix is removed from the source

 filename to get the target filename

 Concatenation with .zst files

 It is possible to concatenate .zst files as is. zstd will decompress

 such files as if they were a single .zst file.

OPTIONS

 Integer suffixes and special values

 In most places where an integer argument is expected, an optional suf?

 fix is supported to easily indicate large integers. There must be no

 space between the integer and the suffix.

 KiB Multiply the integer by 1,024 (2\^10). Ki, K, and KB are ac?

 cepted as synonyms for KiB.

 MiB Multiply the integer by 1,048,576 (2\^20). Mi, M, and MB are ac?

 cepted as synonyms for MiB.

 Operation mode

 If multiple operation mode options are given, the last one takes ef?

 fect.

 -z, --compress

 Compress. This is the default operation mode when no operation

 mode option is specified and no other operation mode is implied Page 2/16

 from the command name (for example, unzstd implies --decom?

 press).

 -d, --decompress, --uncompress

 Decompress.

 -t, --test

 Test the integrity of compressed files. This option is equiva?

 lent to --decompress --stdout except that the decompressed data

 is discarded instead of being written to standard output. No

 files are created or removed.

 -b# Benchmark file(s) using compression level #

 --train FILEs

 Use FILEs as a training set to create a dictionary. The training

 set should contain a lot of small files (> 100).

 -l, --list

 Display information related to a zstd compressed file, such as

 size, ratio, and checksum. Some of these fields may not be

 available. This command can be augmented with the -v modifier.

 Operation modifiers

 ? -#: # compression level [1-19] (default: 3)

 ? --ultra: unlocks high compression levels 20+ (maximum 22), using a

 lot more memory. Note that decompression will also require more

 memory when using these levels.

 ? --fast[=#]: switch to ultra-fast compression levels. If =# is not

 present, it defaults to 1. The higher the value, the faster the

 compression speed, at the cost of some compression ratio. This set?

 ting overwrites compression level if one was set previously. Simi?

 larly, if a compression level is set after --fast, it overrides it.

 ? -T#, --threads=#: Compress using # working threads (default: 1). If

 # is 0, attempt to detect and use the number of physical CPU cores.

 In all cases, the nb of threads is capped to ZSTDMT_NBWORKERS_MAX,

 which is either 64 in 32-bit mode, or 256 for 64-bit environments.

 This modifier does nothing if zstd is compiled without multithread

 support. Page 3/16

 ? --single-thread: Does not spawn a thread for compression, use a

 single thread for both I/O and compression. In this mode, compres?

 sion is serialized with I/O, which is slightly slower. (This is

 different from -T1, which spawns 1 compression thread in parallel

 of I/O). This mode is the only one available when multithread sup?

 port is disabled. Single-thread mode features lower memory usage.

 Final compressed result is slightly different from -T1.

 ? --auto-threads={physical,logical} (default: physical): When using a

 default amount of threads via -T0, choose the default based on the

 number of detected physical or logical cores.

 ? --adapt[=min=#,max=#] : zstd will dynamically adapt compression

 level to perceived I/O conditions. Compression level adaptation can

 be observed live by using command -v. Adaptation can be constrained

 between supplied min and max levels. The feature works when com?

 bined with multi-threading and --long mode. It does not work with

 --single-thread. It sets window size to 8 MB by default (can be

 changed manually, see wlog). Due to the chaotic nature of dynamic

 adaptation, compressed result is not reproducible. note : at the

 time of this writing, --adapt can remain stuck at low speed when

 combined with multiple worker threads (>=2).

 ? --long[=#]: enables long distance matching with # windowLog, if not

 # is not present it defaults to 27. This increases the window size

 (windowLog) and memory usage for both the compressor and decompres?

 sor. This setting is designed to improve the compression ratio for

 files with long matches at a large distance.

 Note: If windowLog is set to larger than 27, --long=windowLog or

 --memory=windowSize needs to be passed to the decompressor.

 ? -D DICT: use DICT as Dictionary to compress or decompress FILE(s)

 ? --patch-from FILE: Specify the file to be used as a reference point

 for zstd?s diff engine. This is effectively dictionary compression

 with some convenient parameter selection, namely that windowSize >

 srcSize.

 Note: cannot use both this and -D together Note: --long mode will Page 4/16

 be automatically activated if chainLog < fileLog (fileLog being the

 windowLog required to cover the whole file). You can also manually

 force it. Node: for all levels, you can use --patch-from in --sin?

 gle-thread mode to improve compression ratio at the cost of speed

 Note: for level 19, you can get increased compression ratio at the

 cost of speed by specifying --zstd=targetLength= to be something

 large (i.e 4096), and by setting a large --zstd=chainLog=

 ? --rsyncable : zstd will periodically synchronize the compression

 state to make the compressed file more rsync-friendly. There is a

 negligible impact to compression ratio, and the faster compression

 levels will see a small compression speed hit. This feature does

 not work with --single-thread. You probably don?t want to use it

 with long range mode, since it will decrease the effectiveness of

 the synchronization points, but your mileage may vary.

 ? -C, --[no-]check: add integrity check computed from uncompressed

 data (default: enabled)

 ? --[no-]content-size: enable / disable whether or not the original

 size of the file is placed in the header of the compressed file.

 The default option is --content-size (meaning that the original

 size will be placed in the header).

 ? --no-dictID: do not store dictionary ID within frame header (dic?

 tionary compression). The decoder will have to rely on implicit

 knowledge about which dictionary to use, it won?t be able to check

 if it?s correct.

 ? -M#, --memory=#: Set a memory usage limit. By default, Zstandard

 uses 128 MB for decompression as the maximum amount of memory the

 decompressor is allowed to use, but you can override this manually

 if need be in either direction (ie. you can increase or decrease

 it).

 This is also used during compression when using with --patch-from=.

 In this case, this parameter overrides that maximum size allowed

 for a dictionary. (128 MB).

 Additionally, this can be used to limit memory for dictionary Page 5/16

 training. This parameter overrides the default limit of 2 GB. zstd

 will load training samples up to the memory limit and ignore the

 rest.

 ? --stream-size=# : Sets the pledged source size of input coming from

 a stream. This value must be exact, as it will be included in the

 produced frame header. Incorrect stream sizes will cause an error.

 This information will be used to better optimize compression param?

 eters, resulting in better and potentially faster compression, es?

 pecially for smaller source sizes.

 ? --size-hint=#: When handling input from a stream, zstd must guess

 how large the source size will be when optimizing compression pa?

 rameters. If the stream size is relatively small, this guess may be

 a poor one, resulting in a higher compression ratio than expected.

 This feature allows for controlling the guess when needed. Exact

 guesses result in better compression ratios. Overestimates result

 in slightly degraded compression ratios, while underestimates may

 result in significant degradation.

 ? -o FILE: save result into FILE

 ? -f, --force: disable input and output checks. Allows overwriting

 existing files, input from console, output to stdout, operating on

 links, block devices, etc.

 ? -c, --stdout: write to standard output (even if it is the console)

 ? --[no-]sparse: enable / disable sparse FS support, to make files

 with many zeroes smaller on disk. Creating sparse files may save

 disk space and speed up decompression by reducing the amount of

 disk I/O. default: enabled when output is into a file, and disabled

 when output is stdout. This setting overrides default and can force

 sparse mode over stdout.

 ? --rm: remove source file(s) after successful compression or decom?

 pression. If used in combination with -o, will trigger a confirma?

 tion prompt (which can be silenced with -f), as this is a destruc?

 tive operation.

 ? -k, --keep: keep source file(s) after successful compression or de? Page 6/16

 compression. This is the default behavior.

 ? -r: operate recursively on directories. It selects all files in the

 named directory and all its subdirectories. This can be useful both

 to reduce command line typing, and to circumvent shell expansion

 limitations, when there are a lot of files and naming breaks the

 maximum size of a command line.

 ? --filelist FILE read a list of files to process as content from

 FILE. Format is compatible with ls output, with one file per line.

 ? --output-dir-flat DIR: resulting files are stored into target DIR

 directory, instead of same directory as origin file. Be aware that

 this command can introduce name collision issues, if multiple

 files, from different directories, end up having the same name.

 Collision resolution ensures first file with a given name will be

 present in DIR, while in combination with -f, the last file will be

 present instead.

 ? --output-dir-mirror DIR: similar to --output-dir-flat, the output

 files are stored underneath target DIR directory, but this option

 will replicate input directory hierarchy into output DIR.

 If input directory contains "..", the files in this directory will

 be ignored. If input directory is an absolute directory (i.e.

 "/var/tmp/abc"), it will be stored into the "out?

 put-dir/var/tmp/abc". If there are multiple input files or directo?

 ries, name collision resolution will follow the same rules as

 --output-dir-flat.

 ? --format=FORMAT: compress and decompress in other formats. If com?

 piled with support, zstd can compress to or decompress from other

 compression algorithm formats. Possibly available options are zstd,

 gzip, xz, lzma, and lz4. If no such format is provided, zstd is the

 default.

 ? -h/-H, --help: display help/long help and exit

 ? -V, --version: display version number and exit. Advanced : -vV also

 displays supported formats. -vvV also displays POSIX support. -q

 will only display the version number, suitable for machine reading. Page 7/16

 ? -v, --verbose: verbose mode, display more information

 ? -q, --quiet: suppress warnings, interactivity, and notifications.

 specify twice to suppress errors too.

 ? --no-progress: do not display the progress bar, but keep all other

 messages.

 ? --show-default-cparams: Shows the default compression parameters

 that will be used for a particular src file. If the provided src

 file is not a regular file (eg. named pipe), the cli will just out?

 put the default parameters. That is, the parameters that are used

 when the src size is unknown.

 ? --: All arguments after -- are treated as files

Parallel Zstd OPTIONS

 Additional options for the pzstd utility

 -p, --processes

 number of threads to use for (de)compression (default:4)

 Restricted usage of Environment Variables

 Using environment variables to set parameters has security implica?

 tions. Therefore, this avenue is intentionally restricted. Only

 ZSTD_CLEVEL and ZSTD_NBTHREADS are currently supported. They set the

 compression level and number of threads to use during compression, re?

 spectively.

 ZSTD_CLEVEL can be used to set the level between 1 and 19 (the "normal"

 range). If the value of ZSTD_CLEVEL is not a valid integer, it will be

 ignored with a warning message. ZSTD_CLEVEL just replaces the default

 compression level (3).

 ZSTD_NBTHREADS can be used to set the number of threads zstd will at?

 tempt to use during compression. If the value of ZSTD_NBTHREADS is not

 a valid unsigned integer, it will be ignored with a warning message.

 ZSTD_NBTHREADS has a default value of (1), and is capped at ZSTDMT_NB?

 WORKERS_MAX==200. zstd must be compiled with multithread support for

 this to have any effect.

 They can both be overridden by corresponding command line arguments: -#

 for compression level and -T# for number of compression threads. Page 8/16

DICTIONARY BUILDER

 zstd offers dictionary compression, which greatly improves efficiency

 on small files and messages. It?s possible to train zstd with a set of

 samples, the result of which is saved into a file called a dictionary.

 Then during compression and decompression, reference the same dictio?

 nary, using command -D dictionaryFileName. Compression of small files

 similar to the sample set will be greatly improved.

 --train FILEs

 Use FILEs as training set to create a dictionary. The training

 set should contain a lot of small files (> 100), and weight typ?

 ically 100x the target dictionary size (for example, 10 MB for a

 100 KB dictionary). --train can be combined with -r to indicate

 a directory rather than listing all the files, which can be use?

 ful to circumvent shell expansion limits.

 --train supports multithreading if zstd is compiled with thread?

 ing support (default). Additional parameters can be specified

 with --train-fastcover. The legacy dictionary builder can be ac?

 cessed with --train-legacy. The slower cover dictionary builder

 can be accessed with --train-cover. Default is equivalent to

 --train-fastcover=d=8,steps=4.

 -o file

 Dictionary saved into file (default name: dictionary).

 --maxdict=#

 Limit dictionary to specified size (default: 112640).

 -# Use # compression level during training (optional). Will gener?

 ate statistics more tuned for selected compression level, re?

 sulting in a small compression ratio improvement for this level.

 -B# Split input files into blocks of size # (default: no split)

 -M#, --memory=#

 Limit the amount of sample data loaded for training (default: 2

 GB). See above for details.

 --dictID=#

 A dictionary ID is a locally unique ID that a decoder can use to Page 9/16

 verify it is using the right dictionary. By default, zstd will

 create a 4-bytes random number ID. It?s possible to give a pre?

 cise number instead. Short numbers have an advantage : an ID <

 256 will only need 1 byte in the compressed frame header, and an

 ID < 65536 will only need 2 bytes. This compares favorably to 4

 bytes default. However, it?s up to the dictionary manager to not

 assign twice the same ID to 2 different dictionaries.

 --train-cover[=k#,d=#,steps=#,split=#,shrink[=#]]

 Select parameters for the default dictionary builder algorithm

 named cover. If d is not specified, then it tries d = 6 and d =

 8. If k is not specified, then it tries steps values in the

 range [50, 2000]. If steps is not specified, then the default

 value of 40 is used. If split is not specified or split <= 0,

 then the default value of 100 is used. Requires that d <= k. If

 shrink flag is not used, then the default value for shrinkDict

 of 0 is used. If shrink is not specified, then the default value

 for shrinkDictMaxRegression of 1 is used.

 Selects segments of size k with highest score to put in the dic?

 tionary. The score of a segment is computed by the sum of the

 frequencies of all the subsegments of size d. Generally d should

 be in the range [6, 8], occasionally up to 16, but the algorithm

 will run faster with d <= 8. Good values for k vary widely based

 on the input data, but a safe range is [2 * d, 2000]. If split

 is 100, all input samples are used for both training and testing

 to find optimal d and k to build dictionary. Supports multi?

 threading if zstd is compiled with threading support. Having

 shrink enabled takes a truncated dictionary of minimum size and

 doubles in size until compression ratio of the truncated dictio?

 nary is at most shrinkDictMaxRegression% worse than the compres?

 sion ratio of the largest dictionary.

 Examples:

 zstd --train-cover FILEs

 zstd --train-cover=k=50,d=8 FILEs Page 10/16

 zstd --train-cover=d=8,steps=500 FILEs

 zstd --train-cover=k=50 FILEs

 zstd --train-cover=k=50,split=60 FILEs

 zstd --train-cover=shrink FILEs

 zstd --train-cover=shrink=2 FILEs

 --train-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]

 Same as cover but with extra parameters f and accel and differ?

 ent default value of split If split is not specified, then it

 tries split = 75. If f is not specified, then it tries f = 20.

 Requires that 0 < f < 32. If accel is not specified, then it

 tries accel = 1. Requires that 0 < accel <= 10. Requires that d

 = 6 or d = 8.

 f is log of size of array that keeps track of frequency of sub?

 segments of size d. The subsegment is hashed to an index in the

 range [0,2^f - 1]. It is possible that 2 different subsegments

 are hashed to the same index, and they are considered as the

 same subsegment when computing frequency. Using a higher f re?

 duces collision but takes longer.

 Examples:

 zstd --train-fastcover FILEs

 zstd --train-fastcover=d=8,f=15,accel=2 FILEs

 --train-legacy[=selectivity=#]

 Use legacy dictionary builder algorithm with the given dictio?

 nary selectivity (default: 9). The smaller the selectivity

 value, the denser the dictionary, improving its efficiency but

 reducing its possible maximum size. --train-legacy=s=# is also

 accepted.

 Examples:

 zstd --train-legacy FILEs

 zstd --train-legacy=selectivity=8 FILEs

BENCHMARK

 -b# benchmark file(s) using compression level #

 -e# benchmark file(s) using multiple compression levels, from -b# to Page 11/16

 -e# (inclusive)

 -i# minimum evaluation time, in seconds (default: 3s), benchmark

 mode only

 -B#, --block-size=#

 cut file(s) into independent blocks of size # (default: no

 block)

 --priority=rt

 set process priority to real-time

 Output Format: CompressionLevel#Filename : IntputSize -> OutputSize

 (CompressionRatio), CompressionSpeed, DecompressionSpeed

 Methodology: For both compression and decompression speed, the entire

 input is compressed/decompressed in-memory to measure speed. A run

 lasts at least 1 sec, so when files are small, they are compressed/de?

 compressed several times per run, in order to improve measurement accu?

 racy.

ADVANCED COMPRESSION OPTIONS

 ### -B#: Select the size of each compression job. This parameter is

 only available when multi-threading is enabled. Each compression job is

 run in parallel, so this value indirectly impacts the nb of active

 threads. Default job size varies depending on compression level (gener?

 ally 4 * windowSize). -B# makes it possible to manually select a custom

 size. Note that job size must respect a minimum value which is enforced

 transparently. This minimum is either 512 KB, or overlapSize, whichever

 is largest. Different job sizes will lead to (slightly) different com?

 pressed frames.

 --zstd[=options]:

 zstd provides 22 predefined compression levels. The selected or default

 predefined compression level can be changed with advanced compression

 options. The options are provided as a comma-separated list. You may

 specify only the options you want to change and the rest will be taken

 from the selected or default compression level. The list of available

 options:

 strategy=strat, strat=strat Page 12/16

 Specify a strategy used by a match finder.

 There are 9 strategies numbered from 1 to 9, from faster to

 stronger: 1=ZSTD_fast, 2=ZSTD_dfast, 3=ZSTD_greedy, 4=ZSTD_lazy,

 5=ZSTD_lazy2, 6=ZSTD_btlazy2, 7=ZSTD_btopt, 8=ZSTD_btultra,

 9=ZSTD_btultra2.

 windowLog=wlog, wlog=wlog

 Specify the maximum number of bits for a match distance.

 The higher number of increases the chance to find a match which

 usually improves compression ratio. It also increases memory re?

 quirements for the compressor and decompressor. The minimum wlog

 is 10 (1 KiB) and the maximum is 30 (1 GiB) on 32-bit platforms

 and 31 (2 GiB) on 64-bit platforms.

 Note: If windowLog is set to larger than 27, --long=windowLog or

 --memory=windowSize needs to be passed to the decompressor.

 hashLog=hlog, hlog=hlog

 Specify the maximum number of bits for a hash table.

 Bigger hash tables cause less collisions which usually makes

 compression faster, but requires more memory during compression.

 The minimum hlog is 6 (64 B) and the maximum is 30 (1 GiB).

 chainLog=clog, clog=clog

 Specify the maximum number of bits for a hash chain or a binary

 tree.

 Higher numbers of bits increases the chance to find a match

 which usually improves compression ratio. It also slows down

 compression speed and increases memory requirements for compres?

 sion. This option is ignored for the ZSTD_fast strategy.

 The minimum clog is 6 (64 B) and the maximum is 29 (524 Mib) on

 32-bit platforms and 30 (1 Gib) on 64-bit platforms.

 searchLog=slog, slog=slog

 Specify the maximum number of searches in a hash chain or a bi?

 nary tree using logarithmic scale.

 More searches increases the chance to find a match which usually

 increases compression ratio but decreases compression speed. Page 13/16

 The minimum slog is 1 and the maximum is ?windowLog? - 1.

 minMatch=mml, mml=mml

 Specify the minimum searched length of a match in a hash table.

 Larger search lengths usually decrease compression ratio but im?

 prove decompression speed.

 The minimum mml is 3 and the maximum is 7.

 targetLength=tlen, tlen=tlen

 The impact of this field vary depending on selected strategy.

 For ZSTD_btopt, ZSTD_btultra and ZSTD_btultra2, it specifies the

 minimum match length that causes match finder to stop searching.

 A larger targetLength usually improves compression ratio but de?

 creases compression speed. t For ZSTD_fast, it triggers ul?

 tra-fast mode when > 0. The value represents the amount of data

 skipped between match sampling. Impact is reversed : a larger

 targetLength increases compression speed but decreases compres?

 sion ratio.

 For all other strategies, this field has no impact.

 The minimum tlen is 0 and the maximum is 128 Kib.

 overlapLog=ovlog, ovlog=ovlog

 Determine overlapSize, amount of data reloaded from previous

 job. This parameter is only available when multithreading is en?

 abled. Reloading more data improves compression ratio, but de?

 creases speed.

 The minimum ovlog is 0, and the maximum is 9. 1 means "no over?

 lap", hence completely independent jobs. 9 means "full overlap",

 meaning up to windowSize is reloaded from previous job. Reducing

 ovlog by 1 reduces the reloaded amount by a factor 2. For exam?

 ple, 8 means "windowSize/2", and 6 means "windowSize/8". Value 0

 is special and means "default" : ovlog is automatically deter?

 mined by zstd. In which case, ovlog will range from 6 to 9, de?

 pending on selected strat.

 ldmHashLog=lhlog, lhlog=lhlog

 Specify the maximum size for a hash table used for long distance Page 14/16

 matching.

 This option is ignored unless long distance matching is enabled.

 Bigger hash tables usually improve compression ratio at the ex?

 pense of more memory during compression and a decrease in com?

 pression speed.

 The minimum lhlog is 6 and the maximum is 30 (default: 20).

 ldmMinMatch=lmml, lmml=lmml

 Specify the minimum searched length of a match for long distance

 matching.

 This option is ignored unless long distance matching is enabled.

 Larger/very small values usually decrease compression ratio.

 The minimum lmml is 4 and the maximum is 4096 (default: 64).

 ldmBucketSizeLog=lblog, lblog=lblog

 Specify the size of each bucket for the hash table used for long

 distance matching.

 This option is ignored unless long distance matching is enabled.

 Larger bucket sizes improve collision resolution but decrease

 compression speed.

 The minimum lblog is 1 and the maximum is 8 (default: 3).

 ldmHashRateLog=lhrlog, lhrlog=lhrlog

 Specify the frequency of inserting entries into the long dis?

 tance matching hash table.

 This option is ignored unless long distance matching is enabled.

 Larger values will improve compression speed. Deviating far from

 the default value will likely result in a decrease in compres?

 sion ratio.

 The default value is wlog - lhlog.

 Example

 The following parameters sets advanced compression options to something

 similar to predefined level 19 for files bigger than 256 KB:

 --zstd=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6

BUGS

 Report bugs at: https://github.com/facebook/zstd/issues Page 15/16

AUTHOR

 Yann Collet

zstd 1.5.1 December 2021 ZSTD(1)

Page 16/16

