FPDF Libcary

PDF generator

KF
=
e i
wl

Full credit is given to the above companies including the 0§
that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'STAILQ_FOREACH.3'
$ man STAILQ_FOREACH.3
STAILQ(3) Linux Programmer's Manual STAILQ(3)
NAME
STAILQ_CONCAT, STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST, STAILQ_FORE?
ACH, STAILQ_HEAD, STAILQ_HEAD_INITIALIZER, STAILQ_INIT, STAILQ_IN?
SERT_AFTER, STAILQ INSERT_HEAD, STAILQ INSERT_TAIL, STAILQ NEXT,
STAILQ_REMOVE, STAILQ_REMOVE_HEAD, - implementation of a singly linked
tail queue
SYNOPSIS
#include <sys/queue.h>
void STAILQ_CONCAT(STAILQ_HEAD *headl, STAILQ_HEAD *head?2);
int STAILQ_EMPTY(STAILQ_HEAD *head);
STAILQ_ENTRY(TYPE);
struct TYPE *STAILQ_FIRST(STAILQ_HEAD *head);
STAILQ_FOREACH(struct TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);
STAILQ_HEAD(HEADNAME, TYPE);
STAILQ_HEAD STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);
void STAILQ_INIT(STAILQ_HEAD *head);

void STAILQ_INSERT_AFTER(STAILQ_HEAD *head, struct TYPE *listelm, Page 1/5



struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_INSERT_HEAD(STAILQ_HEAD *head, struct TYPE *elm,
STAILQ_ENTRY NAME);

void STAILQ_INSERT_TAIL(STAILQ_HEAD *head, struct TYPE *elm,
STAILQ_ENTRY NAME);

struct TYPE *STAILQ _NEXT(struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_REMOVE(STAILQ_HEAD *head, struct TYPE *elm, TYPE,
STAILQ_ENTRY NAME);

void STAILQ_REMOVE_HEAD(STAILQ_HEAD *head, STAILQ_ENTRY NAME);

DESCRIPTION

These macros define and operate on singly linked tail queues.

In the macro definitions, TYPE is the name of a user-defined structure,

that must contain a field of type STAILQ_ENTRY, named NAME. The argu?

ment HEADNAME is the name of a user-defined structure that must be de?

clared using the macro STAILQ_HEAD().

A singly linked tail queue is headed by a structure defined by the

STAILQ_HEAD() macro. This structure contains a pair of pointers, one

to the first element in the tail queue and the other to the last ele?

ment in the tail queue. The elements are singly linked for minimum

space and pointer manipulation overhead at the expense of O(n) removal

for arbitrary elements. New elements can be added to the tail queue

after an existing element, at the head of the tail queue, or at the end

of the tail queue. A STAILQ_HEAD structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE

is the type of the elements to be linked into the tail queue. A

pointer to the head of the tail queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro STAILQ_HEAD_INITIALIZER() evaluates to an initializer for the

tail queue head.

The macro STAILQ_CONCAT() concatenates the tail queue headed by head2

onto the end of the one headed by headl removing all entries from the Page 2/5



former.
The macro STAILQ_EMPTY() evaluates to true if there are no items on the
tail queue.
The macro STAILQ _ENTRY() declares a structure that connects the ele?
ments in the tail queue.
The macro STAILQ_FIRST() returns the first item on the tail queue or
NULL if the tail queue is empty.
The macro STAILQ_FOREACH() traverses the tail queue referenced by head
in the forward direction, assigning each element in turn to var.
The macro STAILQ_INIT() initializes the tail queue referenced by head.
The macro STAILQ_INSERT_HEAD() inserts the new element elm at the head
of the tail queue.
The macro STAILQ INSERT_TAIL() inserts the new element elm at the end
of the tail queue.
The macro STAILQ _INSERT_AFTER() inserts the new element elm after the
element listelm.
The macro STAILQ _NEXT() returns the next item on the tail queue, or
NULL this item is the last.
The macro STAILQ_REMOVE_HEAD() removes the element at the head of the
tail queue. For optimum efficiency, elements being removed from the
head of the tail queue should use this macro explicitly rather than the
generic STAILQ_REMOVE() macro.
The macro STAILQ_REMOVE() removes the element elm from the tail queue.
RETURN VALUE
STAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the
gueue contains at least one entry.
STAILQ_FIRST(), and STAILQ_NEXT() return a pointer to the first or next
TYPE structure, respectively.
STAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned
to the queue head.
CONFORMING TO
Not in POSIX.1, POSIX.1-2001 or POSIX.1-2008. Present on the BSDs

(STAILQ macros first appeared in 4.4BSD). Page 3/5



BUGS
The macro STAILQ _FOREACH() doesn't allow var to be removed or freed
within the loop, as it would interfere with the traversal. The macro
STAILQ_FOREACH_SAFE(), which is present on the BSDs but is not present
in glibc, fixes this limitation by allowing var to safely be removed
from the list and freed from within the loop without interfering with
the traversal.
EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>
struct entry {
int data;
STAILQ_ENTRY (entry) entries; /* Singly linked tail queue. */
2
STAILQ_HEAD(stailhead, entry);
int
main(void)
{
struct entry *nl, *n2, *n3, *np;
struct stailhead head; [* Singly linked tail queue
head. */
STAILQ_INIT(&head); /* Initialize the queue. */
nl = malloc(sizeof(struct entry)); /* Insert at the head. */
STAILQ _INSERT_HEAD(&head, n1, entries);
nl = malloc(sizeof(struct entry)); /* Insert at the tail. */
STAILQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
STAILQ_INSERT_AFTER(&head, nl, n2, entries);
STAILQ_REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);

n3 = STAILQ_FIRST(&head); Page 4/5



STAILQ_REMOVE_HEAD(&head, entries); /* Deletion from the head. */
free(n3);
nl = STAILQ_FIRST(&head);
nl->data = 0;
for (inti=1;i<5;i++){
nl = malloc(sizeof(struct entry));
STAILQ_INSERT_HEAD(&head, n1, entries);

nl->data = i;

/* Forward traversal. */
STAILQ_FOREACH(np, &head, entries)
printf("%i\n", np->data);
/* TailQ Deletion. */
nl = STAILQ FIRST(&head);
while (n1 != NULL) {
n2 = STAILQ_NEXT(n1, entries);
free(nl);
nl=n2;
}
STAILQ_INIT(&head);
exit(EXIT_SUCCESS);
}
SEE ALSO
insque(3), queue(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

GNU 2020-10-21 STAILQ(3)

Page 5/5



