
Rocky Enterprise Linux 9.2 Manual Pages on command 'backtrace.3'

$ man backtrace.3

BACKTRACE(3) Linux Programmer's Manual BACKTRACE(3)

NAME

 backtrace, backtrace_symbols, backtrace_symbols_fd - support for appli?

 cation self-debugging

SYNOPSIS

 #include <execinfo.h>

 int backtrace(void **buffer, int size);

 char **backtrace_symbols(void *const *buffer, int size);

 void backtrace_symbols_fd(void *const *buffer, int size, int fd);

DESCRIPTION

 backtrace() returns a backtrace for the calling program, in the array

 pointed to by buffer. A backtrace is the series of currently active

 function calls for the program. Each item in the array pointed to by

 buffer is of type void *, and is the return address from the corre?

 sponding stack frame. The size argument specifies the maximum number

 of addresses that can be stored in buffer. If the backtrace is larger

 than size, then the addresses corresponding to the size most recent

 function calls are returned; to obtain the complete backtrace, make Page 1/5

 sure that buffer and size are large enough.

 Given the set of addresses returned by backtrace() in buffer, back?

 trace_symbols() translates the addresses into an array of strings that

 describe the addresses symbolically. The size argument specifies the

 number of addresses in buffer. The symbolic representation of each ad?

 dress consists of the function name (if this can be determined), a

 hexadecimal offset into the function, and the actual return address (in

 hexadecimal). The address of the array of string pointers is returned

 as the function result of backtrace_symbols(). This array is mal?

 loc(3)ed by backtrace_symbols(), and must be freed by the caller. (The

 strings pointed to by the array of pointers need not and should not be

 freed.)

 backtrace_symbols_fd() takes the same buffer and size arguments as

 backtrace_symbols(), but instead of returning an array of strings to

 the caller, it writes the strings, one per line, to the file descriptor

 fd. backtrace_symbols_fd() does not call malloc(3), and so can be em?

 ployed in situations where the latter function might fail, but see

 NOTES.

RETURN VALUE

 backtrace() returns the number of addresses returned in buffer, which

 is not greater than size. If the return value is less than size, then

 the full backtrace was stored; if it is equal to size, then it may have

 been truncated, in which case the addresses of the oldest stack frames

 are not returned.

 On success, backtrace_symbols() returns a pointer to the array mal?

 loc(3)ed by the call; on error, NULL is returned.

VERSIONS

 backtrace(), backtrace_symbols(), and backtrace_symbols_fd() are pro?

 vided in glibc since version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??? Page 2/5

 ?Interface ? Attribute ? Value ?

 ???

 ?backtrace(), ? Thread safety ? MT-Safe ?

 ?backtrace_symbols(), ? ? ?

 ?backtrace_symbols_fd() ? ? ?

 ???

CONFORMING TO

 These functions are GNU extensions.

NOTES

 These functions make some assumptions about how a function's return ad?

 dress is stored on the stack. Note the following:

 * Omission of the frame pointers (as implied by any of gcc(1)'s non?

 zero optimization levels) may cause these assumptions to be vio?

 lated.

 * Inlined functions do not have stack frames.

 * Tail-call optimization causes one stack frame to replace another.

 * backtrace() and backtrace_symbols_fd() don't call malloc() explic?

 itly, but they are part of libgcc, which gets loaded dynamically

 when first used. Dynamic loading usually triggers a call to mal?

 loc(3). If you need certain calls to these two functions to not al?

 locate memory (in signal handlers, for example), you need to make

 sure libgcc is loaded beforehand.

 The symbol names may be unavailable without the use of special linker

 options. For systems using the GNU linker, it is necessary to use the

 -rdynamic linker option. Note that names of "static" functions are not

 exposed, and won't be available in the backtrace.

EXAMPLES

 The program below demonstrates the use of backtrace() and back?

 trace_symbols(). The following shell session shows what we might see

 when running the program:

 $ cc -rdynamic prog.c -o prog

 $./prog 3

 backtrace() returned 8 addresses Page 3/5

 ./prog(myfunc3+0x5c) [0x80487f0]

 ./prog [0x8048871]

 ./prog(myfunc+0x21) [0x8048894]

 ./prog(myfunc+0x1a) [0x804888d]

 ./prog(myfunc+0x1a) [0x804888d]

 ./prog(main+0x65) [0x80488fb]

 /lib/libc.so.6(__libc_start_main+0xdc) [0xb7e38f9c]

 ./prog [0x8048711]

 Program source

 #include <execinfo.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define BT_BUF_SIZE 100

 void

 myfunc3(void)

 {

 int nptrs;

 void *buffer[BT_BUF_SIZE];

 char **strings;

 nptrs = backtrace(buffer, BT_BUF_SIZE);

 printf("backtrace() returned %d addresses\n", nptrs);

 /* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)

 would produce similar output to the following: */

 strings = backtrace_symbols(buffer, nptrs);

 if (strings == NULL) {

 perror("backtrace_symbols");

 exit(EXIT_FAILURE);

 }

 for (int j = 0; j < nptrs; j++)

 printf("%s\n", strings[j]);

 free(strings);

 } Page 4/5

 static void /* "static" means don't export the symbol... */

 myfunc2(void)

 {

 myfunc3();

 }

 void

 myfunc(int ncalls)

 {

 if (ncalls > 1)

 myfunc(ncalls - 1);

 else

 myfunc2();

 }

 int

 main(int argc, char *argv[])

 {

 if (argc != 2) {

 fprintf(stderr, "%s num-calls\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 myfunc(atoi(argv[1]));

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 addr2line(1), gcc(1), gdb(1), ld(1), dlopen(3), malloc(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 BACKTRACE(3)

Page 5/5

