
Rocky Enterprise Linux 9.2 Manual Pages on command 'bootparam.7'

$ man bootparam.7

BOOTPARAM(7) Linux Programmer's Manual BOOTPARAM(7)

NAME

 bootparam - introduction to boot time parameters of the Linux kernel

DESCRIPTION

 The Linux kernel accepts certain 'command-line options' or 'boot time

 parameters' at the moment it is started. In general, this is used to

 supply the kernel with information about hardware parameters that the

 kernel would not be able to determine on its own, or to avoid/override

 the values that the kernel would otherwise detect.

 When the kernel is booted directly by the BIOS, you have no opportunity

 to specify any parameters. So, in order to take advantage of this pos?

 sibility you have to use a boot loader that is able to pass parameters,

 such as GRUB.

 The argument list

 The kernel command line is parsed into a list of strings (boot argu?

 ments) separated by spaces. Most of the boot arguments have the form:

 name[=value_1][,value_2]...[,value_10]

 where 'name' is a unique keyword that is used to identify what part of Page 1/13

 the kernel the associated values (if any) are to be given to. Note the

 limit of 10 is real, as the present code handles only 10 comma sepa?

 rated parameters per keyword. (However, you can reuse the same keyword

 with up to an additional 10 parameters in unusually complicated situa?

 tions, assuming the setup function supports it.)

 Most of the sorting is coded in the kernel source file init/main.c.

 First, the kernel checks to see if the argument is any of the special

 arguments 'root=', 'nfsroot=', 'nfsaddrs=', 'ro', 'rw', 'debug' or

 'init'. The meaning of these special arguments is described below.

 Then it walks a list of setup functions to see if the specified argu?

 ment string (such as 'foo') has been associated with a setup function

 ('foo_setup()') for a particular device or part of the kernel. If you

 passed the kernel the line foo=3,4,5,6 then the kernel would search the

 bootsetups array to see if 'foo' was registered. If it was, then it

 would call the setup function associated with 'foo' (foo_setup()) and

 hand it the arguments 3, 4, 5, and 6 as given on the kernel command

 line.

 Anything of the form 'foo=bar' that is not accepted as a setup function

 as described above is then interpreted as an environment variable to be

 set. A (useless?) example would be to use 'TERM=vt100' as a boot argu?

 ment.

 Any remaining arguments that were not picked up by the kernel and were

 not interpreted as environment variables are then passed onto PID 1,

 which is usually the init(1) program. The most common argument that is

 passed to the init process is the word 'single' which instructs it to

 boot the computer in single user mode, and not launch all the usual

 daemons. Check the manual page for the version of init(1) installed on

 your system to see what arguments it accepts.

 General non-device-specific boot arguments

 'init=...'

 This sets the initial command to be executed by the kernel. If

 this is not set, or cannot be found, the kernel will try

 /sbin/init, then /etc/init, then /bin/init, then /bin/sh and Page 2/13

 panic if all of this fails.

 'nfsaddrs=...'

 This sets the NFS boot address to the given string. This boot

 address is used in case of a net boot.

 'nfsroot=...'

 This sets the NFS root name to the given string. If this string

 does not begin with '/' or ',' or a digit, then it is prefixed

 by '/tftpboot/'. This root name is used in case of a net boot.

 'root=...'

 This argument tells the kernel what device is to be used as the

 root filesystem while booting. The default of this setting is

 determined at compile time, and usually is the value of the root

 device of the system that the kernel was built on. To override

 this value, and select the second floppy drive as the root de?

 vice, one would use 'root=/dev/fd1'.

 The root device can be specified symbolically or numerically. A

 symbolic specification has the form /dev/XXYN, where XX desig?

 nates the device type (e.g., 'hd' for ST-506 compatible hard

 disk, with Y in 'a'?'d'; 'sd' for SCSI compatible disk, with Y

 in 'a'?'e'), Y the driver letter or number, and N the number (in

 decimal) of the partition on this device.

 Note that this has nothing to do with the designation of these

 devices on your filesystem. The '/dev/' part is purely conven?

 tional.

 The more awkward and less portable numeric specification of the

 above possible root devices in major/minor format is also ac?

 cepted. (For example, /dev/sda3 is major 8, minor 3, so you

 could use 'root=0x803' as an alternative.)

 'rootdelay='

 This parameter sets the delay (in seconds) to pause before at?

 tempting to mount the root filesystem.

 'rootflags=...'

 This parameter sets the mount option string for the root Page 3/13

 filesystem (see also fstab(5)).

 'rootfstype=...'

 The 'rootfstype' option tells the kernel to mount the root

 filesystem as if it where of the type specified. This can be

 useful (for example) to mount an ext3 filesystem as ext2 and

 then remove the journal in the root filesystem, in fact revert?

 ing its format from ext3 to ext2 without the need to boot the

 box from alternate media.

 'ro' and 'rw'

 The 'ro' option tells the kernel to mount the root filesystem as

 'read-only' so that filesystem consistency check programs (fsck)

 can do their work on a quiescent filesystem. No processes can

 write to files on the filesystem in question until it is 're?

 mounted' as read/write capable, for example, by 'mount -w -n -o

 remount /'. (See also mount(8).)

 The 'rw' option tells the kernel to mount the root filesystem

 read/write. This is the default.

 'resume=...'

 This tells the kernel the location of the suspend-to-disk data

 that you want the machine to resume from after hibernation.

 Usually, it is the same as your swap partition or file. Exam?

 ple:

 resume=/dev/hda2

 'reserve=...'

 This is used to protect I/O port regions from probes. The form

 of the command is:

 reserve=iobase,extent[,iobase,extent]...

 In some machines it may be necessary to prevent device drivers

 from checking for devices (auto-probing) in a specific region.

 This may be because of hardware that reacts badly to the prob?

 ing, or hardware that would be mistakenly identified, or merely

 hardware you don't want the kernel to initialize.

 The reserve boot-time argument specifies an I/O port region that Page 4/13

 shouldn't be probed. A device driver will not probe a reserved

 region, unless another boot argument explicitly specifies that

 it do so.

 For example, the boot line

 reserve=0x300,32 blah=0x300

 keeps all device drivers except the driver for 'blah' from prob?

 ing 0x300-0x31f.

 'panic=N'

 By default, the kernel will not reboot after a panic, but this

 option will cause a kernel reboot after N seconds (if N is

 greater than zero). This panic timeout can also be set by

 echo N > /proc/sys/kernel/panic

 'reboot=[warm|cold][,[bios|hard]]'

 Since Linux 2.0.22, a reboot is by default a cold reboot. One

 asks for the old default with 'reboot=warm'. (A cold reboot may

 be required to reset certain hardware, but might destroy not yet

 written data in a disk cache. A warm reboot may be faster.) By

 default, a reboot is hard, by asking the keyboard controller to

 pulse the reset line low, but there is at least one type of

 motherboard where that doesn't work. The option 'reboot=bios'

 will instead jump through the BIOS.

 'nosmp' and 'maxcpus=N'

 (Only when __SMP__ is defined.) A command-line option of

 'nosmp' or 'maxcpus=0' will disable SMP activation entirely; an

 option 'maxcpus=N' limits the maximum number of CPUs activated

 in SMP mode to N.

 Boot arguments for use by kernel developers

 'debug'

 Kernel messages are handed off to a daemon (e.g., klogd(8) or

 similar) so that they may be logged to disk. Messages with a

 priority above console_loglevel are also printed on the console.

 (For a discussion of log levels, see syslog(2).) By default,

 console_loglevel is set to log messages at levels higher than Page 5/13

 KERN_DEBUG. This boot argument will cause the kernel to also

 print messages logged at level KERN_DEBUG. The console loglevel

 can also be set on a booted system via the /proc/sys/ker?

 nel/printk file (described in syslog(2)), the syslog(2) SYS?

 LOG_ACTION_CONSOLE_LEVEL operation, or dmesg(8).

 'profile=N'

 It is possible to enable a kernel profiling function, if one

 wishes to find out where the kernel is spending its CPU cycles.

 Profiling is enabled by setting the variable prof_shift to a

 nonzero value. This is done either by specifying CONFIG_PROFILE

 at compile time, or by giving the 'profile=' option. Now the

 value that prof_shift gets will be N, when given, or CONFIG_PRO?

 FILE_SHIFT, when that is given, or 2, the default. The signifi?

 cance of this variable is that it gives the granularity of the

 profiling: each clock tick, if the system was executing kernel

 code, a counter is incremented:

 profile[address >> prof_shift]++;

 The raw profiling information can be read from /proc/profile.

 Probably you'll want to use a tool such as readprofile.c to di?

 gest it. Writing to /proc/profile will clear the counters.

 Boot arguments for ramdisk use

 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM.) In general

 it is a bad idea to use a ramdisk under Linux?the system will use

 available memory more efficiently itself. But while booting, it is of?

 ten useful to load the floppy contents into a ramdisk. One might also

 have a system in which first some modules (for filesystem or hardware)

 must be loaded before the main disk can be accessed.

 In Linux 1.3.48, ramdisk handling was changed drastically. Ear?

 lier, the memory was allocated statically, and there was a

 'ramdisk=N' parameter to tell its size. (This could also be set

 in the kernel image at compile time.) These days ram disks use

 the buffer cache, and grow dynamically. For a lot of informa?

 tion on the current ramdisk setup, see the kernel source file Page 6/13

 Documentation/blockdev/ramdisk.txt (Documentation/ramdisk.txt in

 older kernels).

 There are four parameters, two boolean and two integral.

 'load_ramdisk=N'

 If N=1, do load a ramdisk. If N=0, do not load a ramdisk.

 (This is the default.)

 'prompt_ramdisk=N'

 If N=1, do prompt for insertion of the floppy. (This is the de?

 fault.) If N=0, do not prompt. (Thus, this parameter is never

 needed.)

 'ramdisk_size=N' or (obsolete) 'ramdisk=N'

 Set the maximal size of the ramdisk(s) to N kB. The default is

 4096 (4 MB).

 'ramdisk_start=N'

 Sets the starting block number (the offset on the floppy where

 the ramdisk starts) to N. This is needed in case the ramdisk

 follows a kernel image.

 'noinitrd'

 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM and

 CONFIG_BLK_DEV_INITRD.) These days it is possible to compile

 the kernel to use initrd. When this feature is enabled, the

 boot process will load the kernel and an initial ramdisk; then

 the kernel converts initrd into a "normal" ramdisk, which is

 mounted read-write as root device; then /linuxrc is executed;

 afterward the "real" root filesystem is mounted, and the initrd

 filesystem is moved over to /initrd; finally the usual boot se?

 quence (e.g., invocation of /sbin/init) is performed.

 For a detailed description of the initrd feature, see the kernel

 source file Documentation/admin-guide/initrd.rst (or Documenta?

 tion/initrd.txt before Linux 4.10).

 The 'noinitrd' option tells the kernel that although it was com?

 piled for operation with initrd, it should not go through the

 above steps, but leave the initrd data under /dev/initrd. (This Page 7/13

 device can be used only once: the data is freed as soon as the

 last process that used it has closed /dev/initrd.)

 Boot arguments for SCSI devices

 General notation for this section:

 iobase -- the first I/O port that the SCSI host occupies. These are

 specified in hexadecimal notation, and usually lie in the range from

 0x200 to 0x3ff.

 irq -- the hardware interrupt that the card is configured to use.

 Valid values will be dependent on the card in question, but will usu?

 ally be 5, 7, 9, 10, 11, 12, and 15. The other values are usually used

 for common peripherals like IDE hard disks, floppies, serial ports, and

 so on.

 scsi-id -- the ID that the host adapter uses to identify itself on the

 SCSI bus. Only some host adapters allow you to change this value, as

 most have it permanently specified internally. The usual default value

 is 7, but the Seagate and Future Domain TMC-950 boards use 6.

 parity -- whether the SCSI host adapter expects the attached devices to

 supply a parity value with all information exchanges. Specifying a one

 indicates parity checking is enabled, and a zero disables parity check?

 ing. Again, not all adapters will support selection of parity behavior

 as a boot argument.

 'max_scsi_luns=...'

 A SCSI device can have a number of 'subdevices' contained within

 itself. The most common example is one of the new SCSI CD-ROMs

 that handle more than one disk at a time. Each CD is addressed

 as a 'Logical Unit Number' (LUN) of that particular device. But

 most devices, such as hard disks, tape drives and such are only

 one device, and will be assigned to LUN zero.

 Some poorly designed SCSI devices cannot handle being probed for

 LUNs not equal to zero. Therefore, if the compile-time flag

 CONFIG_SCSI_MULTI_LUN is not set, newer kernels will by default

 probe only LUN zero.

 To specify the number of probed LUNs at boot, one enters Page 8/13

 'max_scsi_luns=n' as a boot arg, where n is a number between one

 and eight. To avoid problems as described above, one would use

 n=1 to avoid upsetting such broken devices.

 SCSI tape configuration

 Some boot time configuration of the SCSI tape driver can be

 achieved by using the following:

 st=buf_size[,write_threshold[,max_bufs]]

 The first two numbers are specified in units of kB. The default

 buf_size is 32k B, and the maximum size that can be specified is

 a ridiculous 16384 kB. The write_threshold is the value at

 which the buffer is committed to tape, with a default value of

 30 kB. The maximum number of buffers varies with the number of

 drives detected, and has a default of two. An example usage

 would be:

 st=32,30,2

 Full details can be found in the file Documentation/scsi/st.txt

 (or drivers/scsi/README.st for older kernels) in the Linux ker?

 nel source.

 Hard disks

 IDE Disk/CD-ROM Driver Parameters

 The IDE driver accepts a number of parameters, which range from

 disk geometry specifications, to support for broken controller

 chips. Drive-specific options are specified by using 'hdX='

 with X in 'a'?'h'.

 Non-drive-specific options are specified with the prefix 'hd='.

 Note that using a drive-specific prefix for a non-drive-specific

 option will still work, and the option will just be applied as

 expected.

 Also note that 'hd=' can be used to refer to the next unspeci?

 fied drive in the (a, ..., h) sequence. For the following dis?

 cussions, the 'hd=' option will be cited for brevity. See the

 file Documentation/ide/ide.txt (or Documentation/ide.txt in

 older kernels, or drivers/block/README.ide in ancient kernels) Page 9/13

 in the Linux kernel source for more details.

 The 'hd=cyls,heads,sects[,wpcom[,irq]]' options

 These options are used to specify the physical geometry of the

 disk. Only the first three values are required. The cylin?

 der/head/sectors values will be those used by fdisk. The write

 precompensation value is ignored for IDE disks. The IRQ value

 specified will be the IRQ used for the interface that the drive

 resides on, and is not really a drive-specific parameter.

 The 'hd=serialize' option

 The dual IDE interface CMD-640 chip is broken as designed such

 that when drives on the secondary interface are used at the same

 time as drives on the primary interface, it will corrupt your

 data. Using this option tells the driver to make sure that both

 interfaces are never used at the same time.

 The 'hd=noprobe' option

 Do not probe for this drive. For example,

 hdb=noprobe hdb=1166,7,17

 would disable the probe, but still specify the drive geometry so

 that it would be registered as a valid block device, and hence

 usable.

 The 'hd=nowerr' option

 Some drives apparently have the WRERR_STAT bit stuck on perma?

 nently. This enables a work-around for these broken devices.

 The 'hd=cdrom' option

 This tells the IDE driver that there is an ATAPI compatible CD-

 ROM attached in place of a normal IDE hard disk. In most cases

 the CD-ROM is identified automatically, but if it isn't then

 this may help.

 Standard ST-506 Disk Driver Options ('hd=')

 The standard disk driver can accept geometry arguments for the

 disks similar to the IDE driver. Note however that it expects

 only three values (C/H/S); any more or any less and it will

 silently ignore you. Also, it accepts only 'hd=' as an argu? Page 10/13

 ment, that is, 'hda=' and so on are not valid here. The format

 is as follows:

 hd=cyls,heads,sects

 If there are two disks installed, the above is repeated with the

 geometry parameters of the second disk.

 Ethernet devices

 Different drivers make use of different parameters, but they all at

 least share having an IRQ, an I/O port base value, and a name. In its

 most generic form, it looks something like this:

 ether=irq,iobase[,param_1[,...param_8]],name

 The first nonnumeric argument is taken as the name. The param_n values

 (if applicable) usually have different meanings for each different

 card/driver. Typical param_n values are used to specify things like

 shared memory address, interface selection, DMA channel and the like.

 The most common use of this parameter is to force probing for a second

 ethercard, as the default is to probe only for one. This can be accom?

 plished with a simple:

 ether=0,0,eth1

 Note that the values of zero for the IRQ and I/O base in the above ex?

 ample tell the driver(s) to autoprobe.

 The Ethernet-HowTo has extensive documentation on using multiple cards

 and on the card/driver-specific implementation of the param_n values

 where used. Interested readers should refer to the section in that

 document on their particular card.

 The floppy disk driver

 There are many floppy driver options, and they are all listed in Docu?

 mentation/blockdev/floppy.txt (or Documentation/floppy.txt in older

 kernels, or drivers/block/README.fd for ancient kernels) in the Linux

 kernel source. See that file for the details.

 The sound driver

 The sound driver can also accept boot arguments to override the com?

 piled-in values. This is not recommended, as it is rather complex. It

 is described in the Linux kernel source file Documenta? Page 11/13

 tion/sound/oss/README.OSS (drivers/sound/Readme.linux in older kernel

 versions). It accepts a boot argument of the form:

 sound=device1[,device2[,device3...[,device10]]]

 where each deviceN value is of the following format 0xTaaaId and the

 bytes are used as follows:

 T - device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16,

 7=SB16-MPU401

 aaa - I/O address in hex.

 I - interrupt line in hex (i.e., 10=a, 11=b, ...)

 d - DMA channel.

 As you can see, it gets pretty messy, and you are better off to compile

 in your own personal values as recommended. Using a boot argument of

 'sound=0' will disable the sound driver entirely.

 The line printer driver

 'lp='

 Syntax:

 lp=0

 lp=auto

 lp=reset

 lp=port[,port...]

 You can tell the printer driver what ports to use and what ports

 not to use. The latter comes in handy if you don't want the

 printer driver to claim all available parallel ports, so that

 other drivers (e.g., PLIP, PPA) can use them instead.

 The format of the argument is multiple port names. For example,

 lp=none,parport0 would use the first parallel port for lp1, and

 disable lp0. To disable the printer driver entirely, one can

 use lp=0.

SEE ALSO

 klogd(8), mount(8)

 For up-to-date information, see the kernel source file Documenta?

 tion/admin-guide/kernel-parameters.txt.

COLOPHON Page 12/13

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 BOOTPARAM(7)

Page 13/13

