
Rocky Enterprise Linux 9.2 Manual Pages on command 'close.2'

$ man close.2

CLOSE(2) Linux Programmer's Manual CLOSE(2)

NAME

 close - close a file descriptor

SYNOPSIS

 #include <unistd.h>

 int close(int fd);

DESCRIPTION

 close() closes a file descriptor, so that it no longer refers to any

 file and may be reused. Any record locks (see fcntl(2)) held on the

 file it was associated with, and owned by the process, are removed (re?

 gardless of the file descriptor that was used to obtain the lock).

 If fd is the last file descriptor referring to the underlying open file

 description (see open(2)), the resources associated with the open file

 description are freed; if the file descriptor was the last reference to

 a file which has been removed using unlink(2), the file is deleted.

RETURN VALUE

 close() returns zero on success. On error, -1 is returned, and errno

 is set appropriately. Page 1/4

ERRORS

 EBADF fd isn't a valid open file descriptor.

 EINTR The close() call was interrupted by a signal; see signal(7).

 EIO An I/O error occurred.

 ENOSPC, EDQUOT

 On NFS, these errors are not normally reported against the first

 write which exceeds the available storage space, but instead

 against a subsequent write(2), fsync(2), or close().

 See NOTES for a discussion of why close() should not be retried after

 an error.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

NOTES

 A successful close does not guarantee that the data has been success?

 fully saved to disk, as the kernel uses the buffer cache to defer

 writes. Typically, filesystems do not flush buffers when a file is

 closed. If you need to be sure that the data is physically stored on

 the underlying disk, use fsync(2). (It will depend on the disk hard?

 ware at this point.)

 The close-on-exec file descriptor flag can be used to ensure that a

 file descriptor is automatically closed upon a successful execve(2);

 see fcntl(2) for details.

 Multithreaded processes and close()

 It is probably unwise to close file descriptors while they may be in

 use by system calls in other threads in the same process. Since a file

 descriptor may be reused, there are some obscure race conditions that

 may cause unintended side effects.

 When dealing with sockets, you have to be sure that there is no recv(2)

 still blocking on it on another thread, otherwise it might block for?

 ever, since no more messages will be send via the socket. Be sure to

 use shutdown(2) to shut down all parts the connection before closing

 the socket.

 Furthermore, consider the following scenario where two threads are per? Page 2/4

 forming operations on the same file descriptor:

 1. One thread is blocked in an I/O system call on the file descriptor.

 For example, it is trying to write(2) to a pipe that is already

 full, or trying to read(2) from a stream socket which currently has

 no available data.

 2. Another thread closes the file descriptor.

 The behavior in this situation varies across systems. On some systems,

 when the file descriptor is closed, the blocking system call returns

 immediately with an error.

 On Linux (and possibly some other systems), the behavior is different.

 the blocking I/O system call holds a reference to the underlying open

 file description, and this reference keeps the description open until

 the I/O system call completes. (See open(2) for a discussion of open

 file descriptions.) Thus, the blocking system call in the first thread

 may successfully complete after the close() in the second thread.

 Dealing with error returns from close()

 A careful programmer will check the return value of close(), since it

 is quite possible that errors on a previous write(2) operation are re?

 ported only on the final close() that releases the open file descrip?

 tion. Failing to check the return value when closing a file may lead

 to silent loss of data. This can especially be observed with NFS and

 with disk quota.

 Note, however, that a failure return should be used only for diagnostic

 purposes (i.e., a warning to the application that there may still be

 I/O pending or there may have been failed I/O) or remedial purposes

 (e.g., writing the file once more or creating a backup).

 Retrying the close() after a failure return is the wrong thing to do,

 since this may cause a reused file descriptor from another thread to be

 closed. This can occur because the Linux kernel always releases the

 file descriptor early in the close operation, freeing it for reuse; the

 steps that may return an error, such as flushing data to the filesystem

 or device, occur only later in the close operation.

 Many other implementations similarly always close the file descriptor Page 3/4

 (except in the case of EBADF, meaning that the file descriptor was in?

 valid) even if they subsequently report an error on return from

 close(). POSIX.1 is currently silent on this point, but there are

 plans to mandate this behavior in the next major release of the stan?

 dard.

 A careful programmer who wants to know about I/O errors may precede

 close() with a call to fsync(2).

 The EINTR error is a somewhat special case. Regarding the EINTR error,

 POSIX.1-2008 says:

 If close() is interrupted by a signal that is to be caught, it

 shall return -1 with errno set to EINTR and the state of fildes

 is unspecified.

 This permits the behavior that occurs on Linux and many other implemen?

 tations, where, as with other errors that may be reported by close(),

 the file descriptor is guaranteed to be closed. However, it also per?

 mits another possibility: that the implementation returns an EINTR er?

 ror and keeps the file descriptor open. (According to its documenta?

 tion, HP-UX's close() does this.) The caller must then once more use

 close() to close the file descriptor, to avoid file descriptor leaks.

 This divergence in implementation behaviors provides a difficult hurdle

 for portable applications, since on many implementations, close() must

 not be called again after an EINTR error, and on at least one, close()

 must be called again. There are plans to address this conundrum for

 the next major release of the POSIX.1 standard.

SEE ALSO

 fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 CLOSE(2)

Page 4/4

