
Rocky Enterprise Linux 9.2 Manual Pages on command 'fts_children.3'

$ man fts_children.3

FTS(3) Linux Programmer's Manual FTS(3)

NAME

 fts, fts_open, fts_read, fts_children, fts_set, fts_close - traverse a

 file hierarchy

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fts.h>

 FTS *fts_open(char * const *path_argv, int options,

 int (*compar)(const FTSENT **, const FTSENT **));

 FTSENT *fts_read(FTS *ftsp);

 FTSENT *fts_children(FTS *ftsp, int instr);

 int fts_set(FTS *ftsp, FTSENT *f, int instr);

 int fts_close(FTS *ftsp);

DESCRIPTION

 The fts functions are provided for traversing file hierarchies. A sim?

 ple overview is that the fts_open() function returns a "handle" (of

 type FTS *) that refers to a file hierarchy "stream". This handle is Page 1/11

 then supplied to the other fts functions. The function fts_read() re?

 turns a pointer to a structure describing one of the files in the file

 hierarchy. The function fts_children() returns a pointer to a linked

 list of structures, each of which describes one of the files contained

 in a directory in the hierarchy.

 In general, directories are visited two distinguishable times; in pre?

 order (before any of their descendants are visited) and in postorder

 (after all of their descendants have been visited). Files are visited

 once. It is possible to walk the hierarchy "logically" (visiting the

 files that symbolic links point to) or physically (visiting the sym?

 bolic links themselves), order the walk of the hierarchy or prune

 and/or revisit portions of the hierarchy.

 Two structures (and associated types) are defined in the include file

 <fts.h>. The first type is FTS, the structure that represents the file

 hierarchy itself. The second type is FTSENT, the structure that repre?

 sents a file in the file hierarchy. Normally, an FTSENT structure is

 returned for every file in the file hierarchy. In this manual page,

 "file" and "FTSENT structure" are generally interchangeable.

 The FTSENT structure contains fields describing a file. The structure

 contains at least the following fields (there are additional fields

 that should be considered private to the implementation):

 typedef struct _ftsent {

 unsigned short fts_info; /* flags for FTSENT structure */

 char *fts_accpath; /* access path */

 char *fts_path; /* root path */

 short fts_pathlen; /* strlen(fts_path) +

 strlen(fts_name) */

 char *fts_name; /* filename */

 short fts_namelen; /* strlen(fts_name) */

 short fts_level; /* depth (-1 to N) */

 int fts_errno; /* file errno */

 long fts_number; /* local numeric value */

 void *fts_pointer; /* local address value */ Page 2/11

 struct _ftsent *fts_parent; /* parent directory */

 struct _ftsent *fts_link; /* next file structure */

 struct _ftsent *fts_cycle; /* cycle structure */

 struct stat *fts_statp; /* stat(2) information */

 } FTSENT;

 These fields are defined as follows:

 fts_info

 One of the following values describing the returned FTSENT

 structure and the file it represents. With the exception of di?

 rectories without errors (FTS_D), all of these entries are ter?

 minal, that is, they will not be revisited, nor will any of

 their descendants be visited.

 FTS_D A directory being visited in preorder.

 FTS_DC A directory that causes a cycle in the tree. (The

 fts_cycle field of the FTSENT structure will be filled in

 as well.)

 FTS_DEFAULT

 Any FTSENT structure that represents a file type not ex?

 plicitly described by one of the other fts_info values.

 FTS_DNR

 A directory which cannot be read. This is an error re?

 turn, and the fts_errno field will be set to indicate

 what caused the error.

 FTS_DOT

 A file named "." or ".." which was not specified as a

 filename to fts_open() (see FTS_SEEDOT).

 FTS_DP A directory being visited in postorder. The contents of

 the FTSENT structure will be unchanged from when it was

 returned in preorder, that is, with the fts_info field

 set to FTS_D.

 FTS_ERR

 This is an error return, and the fts_errno field will be

 set to indicate what caused the error. Page 3/11

 FTS_F A regular file.

 FTS_NS A file for which no stat(2) information was available.

 The contents of the fts_statp field are undefined. This

 is an error return, and the fts_errno field will be set

 to indicate what caused the error.

 FTS_NSOK

 A file for which no stat(2) information was requested.

 The contents of the fts_statp field are undefined.

 FTS_SL A symbolic link.

 FTS_SLNONE

 A symbolic link with a nonexistent target. The contents

 of the fts_statp field reference the file characteristic

 information for the symbolic link itself.

 fts_accpath

 A path for accessing the file from the current directory.

 fts_path

 The path for the file relative to the root of the traversal.

 This path contains the path specified to fts_open() as a prefix.

 fts_pathlen

 The sum of the lengths of the strings referenced by fts_path and

 fts_name.

 fts_name

 The name of the file.

 fts_namelen

 The length of the string referenced by fts_name.

 fts_level

 The depth of the traversal, numbered from -1 to N, where this

 file was found. The FTSENT structure representing the parent of

 the starting point (or root) of the traversal is numbered -1,

 and the FTSENT structure for the root itself is numbered 0.

 fts_errno

 If fts_children() or fts_read() returns an FTSENT structure

 whose fts_info field is set to FTS_DNR, FTS_ERR, or FTS_NS, the Page 4/11

 fts_errno field contains the error number (i.e., the errno

 value) specifying the cause of the error. Otherwise, the con?

 tents of the fts_errno field are undefined.

 fts_number

 This field is provided for the use of the application program

 and is not modified by the fts functions. It is initialized to

 0.

 fts_pointer

 This field is provided for the use of the application program

 and is not modified by the fts functions. It is initialized to

 NULL.

 fts_parent

 A pointer to the FTSENT structure referencing the file in the

 hierarchy immediately above the current file, that is, the di?

 rectory of which this file is a member. A parent structure for

 the initial entry point is provided as well, however, only the

 fts_level, fts_number, and fts_pointer fields are guaranteed to

 be initialized.

 fts_link

 Upon return from the fts_children() function, the fts_link field

 points to the next structure in the NULL-terminated linked list

 of directory members. Otherwise, the contents of the fts_link

 field are undefined.

 fts_cycle

 If a directory causes a cycle in the hierarchy (see FTS_DC), ei?

 ther because of a hard link between two directories, or a sym?

 bolic link pointing to a directory, the fts_cycle field of the

 structure will point to the FTSENT structure in the hierarchy

 that references the same file as the current FTSENT structure.

 Otherwise, the contents of the fts_cycle field are undefined.

 fts_statp

 A pointer to stat(2) information for the file.

 A single buffer is used for all of the paths of all of the files in the Page 5/11

 file hierarchy. Therefore, the fts_path and fts_accpath fields are

 guaranteed to be null-terminated only for the file most recently re?

 turned by fts_read(). To use these fields to reference any files rep?

 resented by other FTSENT structures will require that the path buffer

 be modified using the information contained in that FTSENT structure's

 fts_pathlen field. Any such modifications should be undone before fur?

 ther calls to fts_read() are attempted. The fts_name field is always

 null-terminated.

 fts_open()

 The fts_open() function takes a pointer to an array of character point?

 ers naming one or more paths which make up a logical file hierarchy to

 be traversed. The array must be terminated by a null pointer.

 There are a number of options, at least one of which (either FTS_LOGI?

 CAL or FTS_PHYSICAL) must be specified. The options are selected by

 ORing the following values:

 FTS_COMFOLLOW

 This option causes any symbolic link specified as a root path to

 be followed immediately whether or not FTS_LOGICAL is also spec?

 ified.

 FTS_LOGICAL

 This option causes the fts routines to return FTSENT structures

 for the targets of symbolic links instead of the symbolic links

 themselves. If this option is set, the only symbolic links for

 which FTSENT structures are returned to the application are

 those referencing nonexistent files. Either FTS_LOGICAL or

 FTS_PHYSICAL must be provided to the fts_open() function.

 FTS_NOCHDIR

 As a performance optimization, the fts functions change directo?

 ries as they walk the file hierarchy. This has the side-effect

 that an application cannot rely on being in any particular di?

 rectory during the traversal. The FTS_NOCHDIR option turns off

 this optimization, and the fts functions will not change the

 current directory. Note that applications should not themselves Page 6/11

 change their current directory and try to access files unless

 FTS_NOCHDIR is specified and absolute pathnames were provided as

 arguments to fts_open().

 FTS_NOSTAT

 By default, returned FTSENT structures reference file character?

 istic information (the statp field) for each file visited. This

 option relaxes that requirement as a performance optimization,

 allowing the fts functions to set the fts_info field to FTS_NSOK

 and leave the contents of the statp field undefined.

 FTS_PHYSICAL

 This option causes the fts routines to return FTSENT structures

 for symbolic links themselves instead of the target files they

 point to. If this option is set, FTSENT structures for all sym?

 bolic links in the hierarchy are returned to the application.

 Either FTS_LOGICAL or FTS_PHYSICAL must be provided to the

 fts_open() function.

 FTS_SEEDOT

 By default, unless they are specified as path arguments to

 fts_open(), any files named "." or ".." encountered in the

 file hierarchy are ignored. This option causes the fts routines

 to return FTSENT structures for them.

 FTS_XDEV

 This option prevents fts from descending into directories that

 have a different device number than the file from which the de?

 scent began.

 The argument compar() specifies a user-defined function which may be

 used to order the traversal of the hierarchy. It takes two pointers to

 pointers to FTSENT structures as arguments and should return a negative

 value, zero, or a positive value to indicate if the file referenced by

 its first argument comes before, in any order with respect to, or af?

 ter, the file referenced by its second argument. The fts_accpath,

 fts_path, and fts_pathlen fields of the FTSENT structures may never be

 used in this comparison. If the fts_info field is set to FTS_NS or Page 7/11

 FTS_NSOK, the fts_statp field may not either. If the compar() argument

 is NULL, the directory traversal order is in the order listed in

 path_argv for the root paths, and in the order listed in the directory

 for everything else.

 fts_read()

 The fts_read() function returns a pointer to an FTSENT structure de?

 scribing a file in the hierarchy. Directories (that are readable and

 do not cause cycles) are visited at least twice, once in preorder and

 once in postorder. All other files are visited at least once. (Hard

 links between directories that do not cause cycles or symbolic links to

 symbolic links may cause files to be visited more than once, or direc?

 tories more than twice.)

 If all the members of the hierarchy have been returned, fts_read() re?

 turns NULL and sets the external variable errno to 0. If an error un?

 related to a file in the hierarchy occurs, fts_read() returns NULL and

 sets errno appropriately. If an error related to a returned file oc?

 curs, a pointer to an FTSENT structure is returned, and errno may or

 may not have been set (see fts_info).

 The FTSENT structures returned by fts_read() may be overwritten after a

 call to fts_close() on the same file hierarchy stream, or, after a call

 to fts_read() on the same file hierarchy stream unless they represent a

 file of type directory, in which case they will not be overwritten un?

 til after a call to fts_read() after the FTSENT structure has been re?

 turned by the function fts_read() in postorder.

 fts_children()

 The fts_children() function returns a pointer to an FTSENT structure

 describing the first entry in a NULL-terminated linked list of the

 files in the directory represented by the FTSENT structure most re?

 cently returned by fts_read(). The list is linked through the fts_link

 field of the FTSENT structure, and is ordered by the user-specified

 comparison function, if any. Repeated calls to fts_children() will re-

 create this linked list.

 As a special case, if fts_read() has not yet been called for a hierar? Page 8/11

 chy, fts_children() will return a pointer to the files in the logical

 directory specified to fts_open(), that is, the arguments specified to

 fts_open(). Otherwise, if the FTSENT structure most recently returned

 by fts_read() is not a directory being visited in preorder, or the di?

 rectory does not contain any files, fts_children() returns NULL and

 sets errno to zero. If an error occurs, fts_children() returns NULL

 and sets errno appropriately.

 The FTSENT structures returned by fts_children() may be overwritten af?

 ter a call to fts_children(), fts_close(), or fts_read() on the same

 file hierarchy stream.

 The instr argument is either zero or the following value:

 FTS_NAMEONLY

 Only the names of the files are needed. The contents of all the

 fields in the returned linked list of structures are undefined

 with the exception of the fts_name and fts_namelen fields.

 fts_set()

 The function fts_set() allows the user application to determine further

 processing for the file f of the stream ftsp. The fts_set() function

 returns 0 on success, and -1 if an error occurs.

 The instr argument is either 0 (meaning "do nothing") or one of the

 following values:

 FTS_AGAIN

 Revisit the file; any file type may be revisited. The next call

 to fts_read() will return the referenced file. The fts_stat and

 fts_info fields of the structure will be reinitialized at that

 time, but no other fields will have been changed. This option

 is meaningful only for the most recently returned file from

 fts_read(). Normal use is for postorder directory visits, where

 it causes the directory to be revisited (in both preorder and

 postorder) as well as all of its descendants.

 FTS_FOLLOW

 The referenced file must be a symbolic link. If the referenced

 file is the one most recently returned by fts_read(), the next Page 9/11

 call to fts_read() returns the file with the fts_info and

 fts_statp fields reinitialized to reflect the target of the sym?

 bolic link instead of the symbolic link itself. If the file is

 one of those most recently returned by fts_children(), the

 fts_info and fts_statp fields of the structure, when returned by

 fts_read(), will reflect the target of the symbolic link instead

 of the symbolic link itself. In either case, if the target of

 the symbolic link does not exist, the fields of the returned

 structure will be unchanged and the fts_info field will be set

 to FTS_SLNONE.

 If the target of the link is a directory, the preorder return,

 followed by the return of all of its descendants, followed by a

 postorder return, is done.

 FTS_SKIP

 No descendants of this file are visited. The file may be one of

 those most recently returned by either fts_children() or

 fts_read().

 fts_close()

 The fts_close() function closes the file hierarchy stream referred to

 by ftsp and restores the current directory to the directory from which

 fts_open() was called to open ftsp. The fts_close() function returns 0

 on success, and -1 if an error occurs.

ERRORS

 The function fts_open() may fail and set errno for any of the errors

 specified for open(2) and malloc(3).

 The function fts_close() may fail and set errno for any of the errors

 specified for chdir(2) and close(2).

 The functions fts_read() and fts_children() may fail and set errno for

 any of the errors specified for chdir(2), malloc(3), opendir(3), read?

 dir(3), and stat(2).

 In addition, fts_children(), fts_open(), and fts_set() may fail and set

 errno as follows:

 EINVAL options or instr was invalid. Page 10/11

VERSIONS

 These functions are available in Linux since glibc2.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?fts_open(), fts_set(), fts_close() ? Thread safety ? MT-Safe ?

 ???

 ?fts_read(), fts_children() ? Thread safety ? MT-Unsafe ?

 ???

CONFORMING TO

 4.4BSD.

BUGS

 In versions of glibc before 2.23, all of the APIs described in this man

 page are not safe when compiling a program using the LFS APIs (e.g.,

 when compiling with -D_FILE_OFFSET_BITS=64).

SEE ALSO

 find(1), chdir(2), stat(2), ftw(3), qsort(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 FTS(3)

Page 11/11

