
Rocky Enterprise Linux 9.2 Manual Pages on command 'get_thread_area.2'

$ man get_thread_area.2

SET_THREAD_AREA(2) Linux Programmer's Manual SET_THREAD_AREA(2)

NAME

 get_thread_area, set_thread_area - manipulate thread-local storage in?

 formation

SYNOPSIS

 #include <linux/unistd.h>

 #if defined __i386__ || defined __x86_64__

 # include <asm/ldt.h>

 int get_thread_area(struct user_desc *u_info);

 int set_thread_area(struct user_desc *u_info);

 #elif defined __m68k__

 int get_thread_area(void);

 int set_thread_area(unsigned long tp);

 #elif defined __mips__

 int set_thread_area(unsigned long addr);

 #endif

 Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION Page 1/4

 These calls provide architecture-specific support for a thread-local

 storage implementation. At the moment, set_thread_area() is available

 on m68k, MIPS, and x86 (both 32-bit and 64-bit variants);

 get_thread_area() is available on m68k and x86.

 On m68k and MIPS, set_thread_area() allows storing an arbitrary pointer

 (provided in the tp argument on m68k and in the addr argument on MIPS)

 in the kernel data structure associated with the calling thread; this

 pointer can later be retrieved using get_thread_area() (see also NOTES

 for information regarding obtaining the thread pointer on MIPS).

 On x86, Linux dedicates three global descriptor table (GDT) entries for

 thread-local storage. For more information about the GDT, see the In?

 tel Software Developer's Manual or the AMD Architecture Programming

 Manual.

 Both of these system calls take an argument that is a pointer to a

 structure of the following type:

 struct user_desc {

 unsigned int entry_number;

 unsigned int base_addr;

 unsigned int limit;

 unsigned int seg_32bit:1;

 unsigned int contents:2;

 unsigned int read_exec_only:1;

 unsigned int limit_in_pages:1;

 unsigned int seg_not_present:1;

 unsigned int useable:1;

 #ifdef __x86_64__

 unsigned int lm:1;

 #endif

 };

 get_thread_area() reads the GDT entry indicated by u_info->entry_number

 and fills in the rest of the fields in u_info.

 set_thread_area() sets a TLS entry in the GDT.

 The TLS array entry set by set_thread_area() corresponds to the value Page 2/4

 of u_info->entry_number passed in by the user. If this value is in

 bounds, set_thread_area() writes the TLS descriptor pointed to by

 u_info into the thread's TLS array.

 When set_thread_area() is passed an entry_number of -1, it searches for

 a free TLS entry. If set_thread_area() finds a free TLS entry, the

 value of u_info->entry_number is set upon return to show which entry

 was changed.

 A user_desc is considered "empty" if read_exec_only and seg_not_present

 are set to 1 and all of the other fields are 0. If an "empty" descrip?

 tor is passed to set_thread_area(), the corresponding TLS entry will be

 cleared. See BUGS for additional details.

 Since Linux 3.19, set_thread_area() cannot be used to write non-present

 segments, 16-bit segments, or code segments, although clearing a seg?

 ment is still acceptable.

RETURN VALUE

 On x86, these system calls return 0 on success, and -1 on failure, with

 errno set appropriately.

 On MIPS and m68k, set_thread_area() always returns 0. On m68k,

 get_thread_area() returns the thread area pointer value (previously set

 via set_thread_area()).

ERRORS

 EFAULT u_info is an invalid pointer.

 EINVAL u_info->entry_number is out of bounds.

 ENOSYS get_thread_area() or set_thread_area() was invoked as a 64-bit

 system call.

 ESRCH (set_thread_area()) A free TLS entry could not be located.

VERSIONS

 set_thread_area() first appeared in Linux 2.5.29. get_thread_area()

 first appeared in Linux 2.5.32.

CONFORMING TO

 set_thread_area() and get_thread_area() are Linux-specific and should

 not be used in programs that are intended to be portable.

NOTES Page 3/4

 Glibc does not provide wrappers for these system calls, since they are

 generally intended for use only by threading libraries. In the un?

 likely event that you want to call them directly, use syscall(2).

 arch_prctl(2) can interfere with set_thread_area() on x86. See

 arch_prctl(2) for more details. This is not normally a problem, as

 arch_prctl(2) is normally used only by 64-bit programs.

 On MIPS, the current value of the thread area pointer can be obtained

 using the instruction:

 rdhwr dest, $29

 This instruction traps and is handled by kernel.

BUGS

 On 64-bit kernels before Linux 3.19, one of the padding bits in

 user_desc, if set, would prevent the descriptor from being considered

 empty (see modify_ldt(2)). As a result, the only reliable way to clear

 a TLS entry is to use memset(3) to zero the entire user_desc structure,

 including padding bits, and then to set the read_exec_only and

 seg_not_present bits. On Linux 3.19, a user_desc consisting entirely

 of zeros except for entry_number will also be interpreted as a request

 to clear a TLS entry, but this behaved differently on older kernels.

 Prior to Linux 3.19, the DS and ES segment registers must not reference

 TLS entries.

SEE ALSO

 arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and

 PTRACE_SET_THREAD_AREA)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 SET_THREAD_AREA(2)

Page 4/4

