
Rocky Enterprise Linux 9.2 Manual Pages on command 'gst-launch-1.0.1'

$ man gst-launch-1.0.1

GStreamer(1) General Commands Manual GStreamer(1)

NAME

 gst-launch-1.0 - build and run a GStreamer pipeline

SYNOPSIS

 gst-launch-1.0 [OPTION...] PIPELINE-DESCRIPTION

DESCRIPTION

 gst-launch-1.0 is a tool that builds and runs basic GStreamer pipe?

 lines.

 In simple form, a PIPELINE-DESCRIPTION is a list of elements separated

 by exclamation marks (!). Properties may be appended to elements, in

 the form property=value. A "preset" can also be set using the @pre?

 set=<preset name> synthax.

 For a complete description of possible PIPELINE-DESCRIPTIONS see the

 section pipeline description below or consult the GStreamer documenta?

 tion.

 Please note that gst-launch-1.0 is primarily a debugging tool for de?

 velopers and users. You should not build applications on top of it. For

 applications, use the gst_parse_launch() function of the GStreamer API Page 1/13

 as an easy way to construct pipelines from pipeline descriptions.

OPTIONS

 gst-launch-1.0 accepts the following options:

 --help Print help synopsis and available FLAGS

 -v, --verbose

 Output status information and property notifications

 -q, --quiet

 Do not print any progress information

 -m, --messages

 Output messages posted on the pipeline's bus

 -t, --tags

 Output tags (also known as metadata)

 -e, --eos-on-shutdown

 Force an EOS event on sources before shutting the pipeline

 down. This is useful to make sure muxers create readable files

 when a muxing pipeline is shut down forcefully via Control-C.

 -i, --index

 Gather and print index statistics. This is mostly useful for

 playback or recording pipelines.

 -f, --no-fault

 Do not install a fault handler

 -T, --trace

 Print memory allocation traces. The feature must be enabled at

 compile time to work.

 --no-position

 Do not print current position of pipeline. If this option is

 unspecified, the position will be printed when stdout is a TTY.

 To enable printing position when stdout is not a TTY, use

 "force-position" option.

 --force-position

 Allow printing current position of pipeline even if stdout is

 not a TTY. This option has no effect if the "no-position" op?

 tion is specified. Page 2/13

 GSTREAMER OPTIONS

 gst-launch-1.0 also accepts the following options that are com?

 mon to all GStreamer applications:

 --gst-version

 Prints the version string of the GStreamer core library.

 --gst-fatal-warnings

 Causes GStreamer to abort if a warning message occurs. This is

 equivalent to setting the environment variable G_DEBUG to 'fa?

 tal_warnings' (see the section environment variables below for

 further information).

 --gst-debug=STRING

 A comma separated list of category_name:level pairs to specify

 debugging levels for each category. Level is in the range 0-9

 where 0 will show no messages, and 9 will show all messages.

 The wildcard * can be used to match category names. Note that

 the order of categories and levels is important, wildcards at

 the end may override levels set earlier. The log levels are:

 1=ERROR, 2=WARNING, 3=FIXME, 4=INFO, 5=DEBUG, 6=LOG, 7=TRACE,

 9=MEMDUMP. Since GStreamer 1.2 one can also use the debug level

 names, e.g. --gst-debug=*sink:LOG. A full description of the

 various debug levels can be found in the GStreamer core library

 API documentation, in the "Running GStreamer Applications" sec?

 tion.

 Use --gst-debug-help to show category names

 Example: GST_CAT:5,GST_ELEMENT_*:3,oggdemux:5

 --gst-debug-level=LEVEL

 Sets the threshold for printing debugging messages. A higher

 level will print more messages. The useful range is 0-9, with

 the default being 0. Level 6 (LOG level) will show all informa?

 tion that is usually required for debugging purposes. Higher

 levels are only useful in very specific cases. See above for

 the full list of levels.

 --gst-debug-no-color Page 3/13

 GStreamer normally prints debugging messages so that the mes?

 sages are color-coded when printed to a terminal that handles

 ANSI escape sequences. Using this option causes GStreamer to

 print messages without color. Setting the GST_DEBUG_NO_COLOR

 environment variable will achieve the same thing.

 --gst-debug-color-mode

 GStreamer normally prints debugging messages so that the mes?

 sages are color-coded when printed to a terminal that handles

 ANSI escape sequences (on *nix), or uses W32 console API to

 color the messages printed into a console (on W32). Using this

 option causes GStreamer to print messages without color ('off'

 or 'disable'), print messages with default colors ('on' or

 'auto'), or print messages using ANSI escape sequences for col?

 oring ('unix'). Setting the GST_DEBUG_COLOR_MODE environment

 variable will achieve the same thing.

 --gst-debug-disable

 Disables debugging.

 --gst-debug-help

 Prints a list of available debug categories and their default

 debugging level.

 --gst-plugin-spew

 GStreamer info flags to set Enable printout of errors while

 loading GStreamer plugins

 --gst-plugin-path=PATH

 Add directories separated with ':' to the plugin search path

 --gst-plugin-load=PLUGINS

 Preload plugins specified in a comma-separated list. Another

 way to specify plugins to preload is to use the environment

 variable GST_PLUGIN_PATH

PIPELINE DESCRIPTION

 A pipeline consists elements and links. Elements can be put into bins

 of different sorts. Elements, links and bins can be specified in a

 pipeline description in any order. Page 4/13

 Elements

 ELEMENTTYPE [PROPERTY1 ...]

 Creates an element of type ELEMENTTYPE and sets the PROPERTIES.

 Properties

 PROPERTY=VALUE ...

 Sets the property to the specified value. You can use gst-in?

 spect-1.0(1) to find out about properties and allowed values of differ?

 ent elements.

 Enumeration properties can be set by name, nick or value.

 Presets

 @preset=<preset name> ...

 Sets the preset on the element. you can use gst-inspect-1.0(1) to find

 out what presets are available for a specific element.

 Bins

 [BINTYPE.] ([PROPERTY1 ...] PIPELINE-DESCRIPTION)

 Specifies that a bin of type BINTYPE is created and the given proper?

 ties are set. Every element between the braces is put into the bin.

 Please note the dot that has to be used after the BINTYPE. You will al?

 most never need this functionality, it is only really useful for appli?

 cations using the gst_launch_parse() API with 'bin' as bintype. That

 way it is possible to build partial pipelines instead of a full-fledged

 top-level pipeline.

 Links

 [[SRCELEMENT].[PAD1,...]] ! [[SINKELEMENT].[PAD1,...]] [[SRCELE?

 MENT].[PAD1,...]] ! CAPS ! [[SINKELEMENT].[PAD1,...]] [[SRCELE?

 MENT].[PAD1,...]] : [[SINKELEMENT].[PAD1,...]] [[SRCELE?

 MENT].[PAD1,...]] : CAPS : [[SINKELEMENT].[PAD1,...]]

 Links the element with name SRCELEMENT to the element with name

 SINKELEMENT, using the caps specified in CAPS as a filter. Names can

 be set on elements with the name property. If the name is omitted, the

 element that was specified directly in front of or after the link is

 used. This works across bins. If a padname is given, the link is done

 with these pads. If no pad names are given all possibilities are tried Page 5/13

 and a matching pad is used. If multiple padnames are given, both sides

 must have the same number of pads specified and multiple links are done

 in the given order.

 So the simplest link is a simple exclamation mark, that links the ele?

 ment to the left of it to the element right of it.

 Linking using the : operator attempts to link all possible pads between

 the elements

 Caps

 MEDIATYPE [, PROPERTY[, PROPERTY ...]]] [; CAPS[; CAPS ...]]

 Creates a capability with the given media type and optionally with

 given properties. The media type can be escaped using " or '. If you

 want to chain caps, you can add more caps in the same format after?

 wards.

 Properties

 NAME=[(TYPE)]VALUE

 in lists and ranges: [(TYPE)]VALUE

 Sets the requested property in capabilities. The name is an alphanu?

 meric value and the type can have the following case-insensitive val?

 ues:

 - i or int for integer values or ranges

 - f or float for float values or ranges

 - b, bool or boolean for boolean values

 - s, str or string for strings

 - fraction for fractions (framerate, pixel-aspect-ratio)

 - l or list for lists

 If no type was given, the following order is tried: integer, float,

 boolean, string.

 Integer values must be parsable by strtol(), floats by strtod(). FOURCC

 values may either be integers or strings. Boolean values are (case in?

 sensitive) yes, no, true or false and may like strings be escaped with

 " or '.

 Ranges are in this format: [VALUE, VALUE]

 Lists use this format: { VALUE [, VALUE ...] } Page 6/13

PIPELINE EXAMPLES

 The examples below assume that you have the correct plug-ins available.

 In general, "pulsesink" can be substituted with another audio output

 plug-in such as "alsasink" or "osxaudiosink" Likewise, "xvimagesink"

 can be substituted with "ximagesink", "glimagesink", or "osxvideosink".

 Keep in mind though that different sinks might accept different formats

 and even the same sink might accept different formats on different ma?

 chines, so you might need to add converter elements like audioconvert

 and audioresample (for audio) or videoconvert (for video) in front of

 the sink to make things work.

 Audio playback

 Play the mp3 music file "music.mp3" using a libmpg123-based plug-in and

 output to an Pulseaudio device

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 Play an Ogg Vorbis format file

 gst-launch-1.0 filesrc location=music.ogg ! oggdemux ! vorbis?

 dec ! audioconvert ! audioresample ! pulsesink

 Play an mp3 file or an http stream using GIO

 gst-launch-1.0 giosrc location=music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! pulsesink

 gst-launch-1.0 giosrc location=http://domain.com/music.mp3 !

 mpegaudioparse ! mpg123audiodec ! audioconvert ! audioresample ! puls?

 esink

 Use GIO to play an mp3 file located on an SMB server

 gst-launch-1.0 giosrc location=smb://computer/music.mp3 ! mpe?

 gaudioparse ! mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 Format conversion

 Convert an mp3 music file to an Ogg Vorbis file

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! vorbisenc ! oggmux ! filesink loca?

 tion=music.ogg

 Convert to the FLAC format Page 7/13

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! flacenc ! filesink location=test.flac

 Other

 Plays a .WAV file that contains raw audio data (PCM).

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audio?

 convert ! audioresample ! pulsesink

 Convert a .WAV file containing raw audio data into an Ogg Vorbis or mp3

 file

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audio?

 convert ! vorbisenc ! oggmux ! filesink location=music.ogg

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audio?

 convert ! lamemp3enc ! filesink location=music.mp3

 Rips all tracks from compact disc and convert them into a single mp3

 file

 gst-launch-1.0 cdparanoiasrc mode=continuous ! audioconvert !

 lamemp3enc ! mpegaudioparse ! id3v2mux ! filesink location=cd.mp3

 Rips track 5 from the CD and converts it into a single mp3 file

 gst-launch-1.0 cdparanoiasrc track=5 ! audioconvert !

 lamemp3enc ! mpegaudioparse ! id3v2mux ! filesink location=track5.mp3

 Using gst-inspect-1.0(1), it is possible to discover settings like the

 above for cdparanoiasrc that will tell it to rip the entire cd or only

 tracks of it. Alternatively, you can use an URI and gst-launch-1.0

 will find an element (such as cdparanoia) that supports that protocol

 for you, e.g.:

 gst-launch-1.0 cdda://5 ! lamemp3enc vbr=new vbr-quality=6 !

 filesink location=track5.mp3

 Records sound from your audio input and encodes it into an ogg file

 gst-launch-1.0 pulsesrc ! audioconvert ! vorbisenc ! oggmux !

 filesink location=input.ogg

 Video

 Display only the video portion of an MPEG-1 video file, outputting to

 an X display window

 gst-launch-1.0 filesrc location=JB_FF9_TheGravityOfLove.mpg ! Page 8/13

 dvddemux ! mpegvideoparse ! mpeg2dec ! xvimagesink

 Display the video portion of a .vob file (used on DVDs), outputting to

 an SDL window

 gst-launch-1.0 filesrc location=/flflfj.vob ! dvddemux !

 mpegvideoparse ! mpeg2dec ! sdlvideosink

 Play both video and audio portions of an MPEG movie

 gst-launch-1.0 filesrc location=movie.mpg ! dvddemux name=de?

 muxer demuxer. ! queue ! mpegvideoparse ! mpeg2dec ! sdlvideosink de?

 muxer. ! queue ! mpegaudioparse ! mpg123audiodec ! audioconvert ! au?

 dioresample ! pulsesink

 Play an AVI movie with an external text subtitle stream

 gst-launch-1.0 filesrc location=movie.mpg ! mpegdemux name=de?

 muxer demuxer. ! queue ! mpegvideoparse ! mpeg2dec ! videoconvert !

 sdlvideosink demuxer. ! queue ! mpegaudioparse ! mpg123audiodec ! au?

 dioconvert ! audioresample ! pulsesink

 This example also shows how to refer to specific pads by name if an el?

 ement (here: textoverlay) has multiple sink or source pads.

 gst-launch-1.0 textoverlay name=overlay ! videoconvert !

 videoscale ! autovideosink filesrc location=movie.avi ! decodebin !

 videoconvert ! overlay.video_sink filesrc location=movie.srt ! sub?

 parse ! overlay.text_sink

 Play an AVI movie with an external text subtitle stream using playbin

 gst-launch-1.0 playbin uri=file:///path/to/movie.avi sub?

 uri=file:///path/to/movie.srt

 Network streaming

 Stream video using RTP and network elements.

 This command would be run on the transmitter

 gst-launch-1.0 v4l2src ! video/x-raw,width=128,height=96,for?

 mat=UYVY ! videoconvert ! ffenc_h263 ! video/x-h263 ! rtph263ppay pt=96

 ! udpsink host=192.168.1.1 port=5000

 Use this command on the receiver

 gst-launch-1.0 udpsrc port=5000 ! application/x-rtp,

 clock-rate=90000,payload=96 ! rtph263pdepay queue-delay=0 ! ffdec_h263 Page 9/13

 ! xvimagesink

 Diagnostic

 Generate a null stream and ignore it (and print out details).

 gst-launch-1.0 -v fakesrc num-buffers=16 ! fakesink

 Generate a pure sine tone to test the audio output

 gst-launch-1.0 audiotestsrc ! audioconvert ! audioresample !

 pulsesink

 Generate a familiar test pattern to test the video output

 gst-launch-1.0 videotestsrc ! xvimagesink

 gst-launch-1.0 videotestsrc ! ximagesink

 Automatic linking

 You can use the decodebin element to automatically select the right el?

 ements to get a working pipeline.

 Play any supported audio format

 gst-launch-1.0 filesrc location=musicfile ! decodebin ! audio?

 convert ! audioresample ! pulsesink

 Play any supported video format with video and audio output. Threads

 are used automatically. To make this even easier, you can use the play?

 bin element:

 gst-launch-1.0 filesrc location=videofile ! decodebin name=de?

 coder decoder. ! queue ! audioconvert ! audioresample ! pulsesink de?

 coder. ! videoconvert ! xvimagesink

 gst-launch-1.0 playbin uri=file:///home/joe/foo.avi

 Filtered connections

 These examples show you how to use filtered caps.

 Show a test image and use the YUY2 or YV12 video format for this.

 gst-launch-1.0 videotestsrc ! 'video/x-raw,for?

 mat=YUY2;video/x-raw,format=YV12' ! xvimagesink

 Record audio and write it to a .wav file. Force usage of signed 16 to

 32 bit samples and a sample rate between 32kHz and 64KHz.

 gst-launch-1.0 pulsesrc ! 'audio/x-raw,rate=[32000,64000],for?

 mat={S16LE,S24LE,S32LE}' ! wavenc ! filesink location=recording.wav

ENVIRONMENT VARIABLES Page 10/13

 GST_DEBUG

 Comma-separated list of debug categories and levels (e.g.

 GST_DEBUG=totem:4,typefind:5). '*' is allowed as a wildcard as

 part of debug category names (e.g. GST_DEBUG=*sink:6,*audio*:6).

 Since 1.2.0 it is also possible to specify the log level by name

 (1=ERROR, 2=WARN, 3=FIXME, 4=INFO, 5=DEBUG, 6=LOG, 7=TRACE,

 9=MEMDUMP) (e.g. GST_DEBUG=*audio*:LOG)

 GST_DEBUG_NO_COLOR

 When this environment variable is set, coloured debug output is

 disabled.

 GST_DEBUG_DUMP_DOT_DIR

 When set to a filesystem path, store 'dot' files of pipeline

 graphs there. These can then later be converted into an image

 using the 'dot' utility from the graphviz set of tools, like

 this: dot foo.dot -Tsvg -o foo.svg (png or jpg are also possible

 as output format). There is also a utility called 'xdot' which

 allows you to view the .dot file directly without converting it

 first.

 When the pipeline changes state through NULL to PLAYING and back

 to NULL, a dot file is generated on each state change. To write

 a snapshot of the pipeline state, send a SIGHUP to the process.

 GST_REGISTRY

 Path of the plugin registry file. Default is

 ~/.cache/gstreamer-1.0/registry-CPU.bin where CPU is the ma?

 chine/cpu type GStreamer was compiled for, e.g. 'i486', 'i686',

 'x86-64', 'ppc', etc. (check the output of "uname -i" and "uname

 -m" for details).

 GST_REGISTRY_UPDATE

 Set to "no" to force GStreamer to assume that no plugins have

 changed, been added or been removed. This will make GStreamer

 skip the initial check whether a rebuild of the registry cache

 is required or not. This may be useful in embedded environments

 where the installed plugins never change. Do not use this option Page 11/13

 in any other setup.

 GST_PLUGIN_PATH

 Specifies a list of directories to scan for additional plugins.

 These take precedence over the system plugins.

 GST_PLUGIN_SYSTEM_PATH

 Specifies a list of plugins that are always loaded by default.

 If not set, this defaults to the system-installed path, and the

 plugins installed in the user's home directory

 GST_DEBUG_FILE

 Set this variable to a file path to redirect all GStreamer debug

 messages to this file. If left unset, debug messages with be

 output unto the standard error.

 ORC_CODE

 Useful Orc environment variable. Set ORC_CODE=debug to enable

 debuggers such as gdb to create useful backtraces from Orc-gen?

 erated code. Set ORC_CODE=backup or ORC_CODE=emulate if you

 suspect Orc's SIMD code generator is producing incorrect code.

 (Quite a few important GStreamer plugins like videotestsrc, au?

 dioconvert or audioresample use Orc).

 G_DEBUG

 Useful GLib environment variable. Set G_DEBUG=fatal_warnings to

 make GStreamer programs abort when a critical warning such as an

 assertion failure occurs. This is useful if you want to find out

 which part of the code caused that warning to be triggered and

 under what circumstances. Simply set G_DEBUG as mentioned above

 and run the program in gdb (or let it core dump). Then get a

 stack trace in the usual way.

FILES

 ~/.cache/gstreamer-1.0/registry-*.bin

 The plugin cache; can be deleted at any time, will be re-cre?

 ated automatically when it does not exist yet or plugins

 change. Based on XDG_CACHE_DIR, so may be in a different loca?

 tion than the one suggested. Page 12/13

SEE ALSO

 gst-inspect-1.0(1), gst-launch-1.0(1),

AUTHOR

 The GStreamer team at http://gstreamer.freedesktop.org/

 May 2007 GStreamer(1)

Page 13/13

