
Rocky Enterprise Linux 9.2 Manual Pages on command 'libnftables-json.5'

$ man libnftables-json.5

LIBNFTABLES-JSON(5) LIBNFTABLES-JSON(5)

NAME

 libnftables-json - Supported JSON schema by libnftables

SYNOPSIS

 { "nftables": [OBJECTS] }

 OBJECTS := LIST_OBJECTS | CMD_OBJECTS

 LIST_OBJECTS := LIST_OBJECT [, LIST_OBJECTS]

 CMD_OBJECTS := CMD_OBJECT [, CMD_OBJECTS]

 CMD_OBJECT := { CMD: LIST_OBJECT } | METAINFO_OBJECT

 CMD := "add" | "replace" | "create" | "insert" | "delete" | "list" |

 "reset" | "flush" | "rename"

 LIST_OBJECT := TABLE | CHAIN | RULE | SET | MAP | ELEMENT | FLOWTABLE |

 COUNTER | QUOTA | CT_HELPER | LIMIT | METAINFO_OBJECT | CT_TIMEOUT |

 CT_EXPECTATION

DESCRIPTION

 libnftables supports JSON formatted input and output. This is

 implemented as an alternative frontend to the standard CLI syntax

 parser, therefore basic behaviour is identical and, for (almost) any Page 1/32

 operation available in standard syntax, there should be an equivalent

 one in JSON.

 JSON input may be provided in a single string as parameter to

 nft_run_cmd_from_buffer() or in a file identified by the filename

 parameter of the nft_run_cmd_from_filename() function.

 JSON output has to be enabled via the nft_ctx_output_set_json()

 function, turning library standard output into JSON format. Error

 output remains unaffected.

GLOBAL STRUCTURE

 In general, any JSON input or output is enclosed in an object with a

 single property named nftables. Its value is an array containing

 commands (for input) or ruleset elements (for output).

 A command is an object with a single property whose name identifies the

 command. Its value is a ruleset element - basically identical to output

 elements, apart from certain properties which may be interpreted

 differently or are required when output generally omits them.

METAINFO OBJECT

 In output, the first object in an nftables array is a special one

 containing library information. Its content is as follows:

 { "metainfo": {

 "version": STRING,

 "release_name": STRING,

 "json_schema_version": NUMBER

 }}

 The values of version and release_name properties are equal to the

 package version and release name as printed by nft -v. The value of the

 json_schema_version property is an integer indicating the schema

 version.

 If supplied in library input, the parser will verify the

 json_schema_version value to not exceed the internally hardcoded one

 (to make sure the given schema is fully understood). In future, a lower

 number than the internal one may activate compatibility mode to parse

 outdated and incompatible JSON input. Page 2/32

COMMAND OBJECTS

 The structure accepts an arbitrary amount of commands which are

 interpreted in order of appearance. For instance, the following

 standard syntax input:

 flush ruleset

 add table inet mytable

 add chain inet mytable mychain

 add rule inet mytable mychain tcp dport 22 accept

 translates into JSON as such:

 { "nftables": [

 { "flush": { "ruleset": null }},

 { "add": { "table": {

 "family": "inet",

 "name": "mytable"

 }}},

 { "add": { "chain": {

 "family": "inet",

 "table": "mytable",

 "name": "mychain"

 }}},

 { "add": { "rule": {

 "family": "inet",

 "table": "mytable",

 "chain": "mychain",

 "expr": [

 { "match": {

 "op": "==",

 "left": { "payload": {

 "protocol": "tcp",

 "field": "dport"

 }},

 "right": 22

 }}, Page 3/32

 { "accept": null }

]

 }}}

]}

 ADD

 { "add": ADD_OBJECT }

 ADD_OBJECT := TABLE | CHAIN | RULE | SET | MAP | ELEMENT |

 FLOWTABLE | COUNTER | QUOTA | CT_HELPER | LIMIT |

 CT_TIMEOUT | CT_EXPECTATION

 Add a new ruleset element to the kernel.

 REPLACE

 { "replace": RULE }

 Replace a rule. In RULE, the handle property is mandatory and

 identifies the rule to be replaced.

 CREATE

 { "create": ADD_OBJECT }

 Identical to add command, but returns an error if the object already

 exists.

 INSERT

 { "insert": RULE }

 This command is identical to add for rules, but instead of appending

 the rule to the chain by default, it inserts at first position. If a

 handle or index property is given, the rule is inserted before the rule

 identified by those properties.

 DELETE

 { "delete": ADD_OBJECT }

 Delete an object from the ruleset. Only the minimal number of

 properties required to uniquely identify an object is generally needed

 in ADD_OBJECT. For most ruleset elements, this is family and table plus

 either handle or name (except rules since they don?t have a name).

 LIST

 { "list": LIST_OBJECT }

 LIST_OBJECT := TABLE | TABLES | CHAIN | CHAINS | SET | SETS | Page 4/32

 MAP | MAPS | COUNTER | COUNTERS | QUOTA | QUOTAS |

 CT_HELPER | CT_HELPERS | LIMIT | LIMITS | RULESET |

 METER | METERS | FLOWTABLE | FLOWTABLES |

 CT_TIMEOUT | CT_EXPECTATION

 List ruleset elements. The plural forms are used to list all objects of

 that kind, optionally filtered by family and for some, also table.

 RESET

 { "reset": RESET_OBJECT }

 RESET_OBJECT := COUNTER | COUNTERS | QUOTA | QUOTAS

 Reset state in suitable objects, i.e. zero their internal counter.

 FLUSH

 { "flush": FLUSH_OBJECT }

 FLUSH_OBJECT := TABLE | CHAIN | SET | MAP | METER | RULESET

 Empty contents in given object, e.g. remove all chains from given table

 or remove all elements from given set.

 RENAME

 { "rename": CHAIN }

 Rename a chain. The new name is expected in a dedicated property named

 newname.

RULESET ELEMENTS

 TABLE

 { "table": {

 "family": STRING,

 "name": STRING,

 "handle": NUMBER

 }}

 This object describes a table.

 family

 The table?s family, e.g. "ip" or "ip6".

 name

 The table?s name.

 handle

 The table?s handle. In input, it is used only in delete command as Page 5/32

 alternative to name.

 CHAIN

 { "chain": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "newname": STRING,

 "handle": NUMBER,

 "type": STRING,

 "hook": STRING,

 "prio": NUMBER,

 "dev": STRING,

 "policy": STRING

 }}

 This object describes a chain.

 family

 The table?s family.

 table

 The table?s name.

 name

 The chain?s name.

 handle

 The chain?s handle. In input, it is used only in delete command as

 alternative to name.

 newname

 A new name for the chain, only relevant in the rename command.

 The following properties are required for base chains:

 type

 The chain?s type.

 hook

 The chain?s hook.

 prio

 The chain?s priority. Page 6/32

 dev

 The chain?s bound interface (if in the netdev family).

 policy

 The chain?s policy.

 RULE

 { "rule": {

 "family": STRING,

 "table": STRING,

 "chain": STRING,

 "expr": [STATEMENTS],

 "handle": NUMBER,

 "index": NUMBER,

 "comment": STRING

 }}

 STATEMENTS := STATEMENT [, STATEMENTS]

 This object describes a rule. Basic building blocks of rules are

 statements. Each rule consists of at least one.

 family

 The table?s family.

 table

 The table?s name.

 chain

 The chain?s name.

 expr

 An array of statements this rule consists of. In input, it is used

 in add/insert/replace commands only.

 handle

 The rule?s handle. In delete/replace commands, it serves as an

 identifier of the rule to delete/replace. In add/insert commands,

 it serves as an identifier of an existing rule to append/prepend

 the rule to.

 index

 The rule?s position for add/insert commands. It is used as an Page 7/32

 alternative to handle then.

 comment

 Optional rule comment.

 SET / MAP

 { "set": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "type": SET_TYPE,

 "policy": SET_POLICY,

 "flags": [SET_FLAG_LIST],

 "elem": SET_ELEMENTS,

 "timeout": NUMBER,

 "gc-interval": NUMBER,

 "size": NUMBER

 }}

 { "map": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "type": SET_TYPE,

 "map": STRING,

 "policy": SET_POLICY,

 "flags": [SET_FLAG_LIST],

 "elem": SET_ELEMENTS,

 "timeout": NUMBER,

 "gc-interval": NUMBER,

 "size": NUMBER

 }}

 SET_TYPE := STRING | [SET_TYPE_LIST]

 SET_TYPE_LIST := STRING [, SET_TYPE_LIST] Page 8/32

 SET_POLICY := "performance" | "memory"

 SET_FLAG_LIST := SET_FLAG [, SET_FLAG_LIST]

 SET_FLAG := "constant" | "interval" | "timeout"

 SET_ELEMENTS := EXPRESSION | [EXPRESSION_LIST]

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION_LIST]

 These objects describe a named set or map. Maps are a special form of

 sets in that they translate a unique key to a value.

 family

 The table?s family.

 table

 The table?s name.

 name

 The set?s name.

 handle

 The set?s handle. For input, it is used in the delete command only.

 type

 The set?s datatype, see below.

 map

 Type of values this set maps to (i.e. this set is a map).

 policy

 The set?s policy.

 flags

 The set?s flags.

 elem

 Initial set element(s), see below.

 timeout

 Element timeout in seconds.

 gc-interval

 Garbage collector interval in seconds.

 size

 Maximum number of elements supported.

 TYPE

 The set type might be a string, such as "ipv4_addr" or an array Page 9/32

 consisting of strings (for concatenated types).

 ELEM

 A single set element might be given as string, integer or boolean

 value for simple cases. If additional properties are required, a

 formal elem object may be used.

 Multiple elements may be given in an array.

 ELEMENT

 { "element": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "elem": SET_ELEM

 }}

 SET_ELEM := EXPRESSION | [EXPRESSION_LIST]

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION]

 Manipulate element(s) in a named set.

 family

 The table?s family.

 table

 The table?s name.

 name

 The set?s name.

 elem

 See elem property of set object.

 FLOWTABLE

 { "flowtable": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "hook": STRING,

 "prio": NUMBER,

 "dev": FT_INTERFACE Page 10/32

 }}

 FT_INTERFACE := STRING | [FT_INTERFACE_LIST]

 FT_INTERFACE_LIST := STRING [, STRING]

 This object represents a named flowtable.

 family

 The table?s family.

 table

 The table?s name.

 name

 The flow table?s name.

 handle

 The flow table?s handle. In input, it is used by the delete command

 only.

 hook

 The flow table?s hook.

 prio

 The flow table?s priority.

 dev

 The flow table?s interface(s).

 COUNTER

 { "counter": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "packets": NUMBER,

 "bytes": NUMBER

 }}

 This object represents a named counter.

 family

 The table?s family.

 table

 The table?s name. Page 11/32

 name

 The counter?s name.

 handle

 The counter?s handle. In input, it is used by the delete command

 only.

 packets

 Packet counter value.

 bytes

 Byte counter value.

 QUOTA

 { "quota": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "bytes": NUMBER,

 "used": NUMBER,

 "inv": BOOLEAN

 }}

 This object represents a named quota.

 family

 The table?s family.

 table

 The table?s name.

 name

 The quota?s name.

 handle

 The quota?s handle. In input, it is used by the delete command

 only.

 bytes

 Quota threshold.

 used

 Quota used so far. Page 12/32

 inv

 If true, match if the quota has been exceeded.

 CT HELPER

 { "ct helper": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": ... ',

 "type": 'STRING,

 "protocol": CTH_PROTO,

 "l3proto": STRING

 }}

 CTH_PROTO := "tcp" | "udp"

 This object represents a named conntrack helper.

 family

 The table?s family.

 table

 The table?s name.

 name

 The ct helper?s name.

 handle

 The ct helper?s handle. In input, it is used by the delete command

 only.

 type

 The ct helper type name, e.g. "ftp" or "tftp".

 protocol

 The ct helper?s layer 4 protocol.

 l3proto

 The ct helper?s layer 3 protocol, e.g. "ip" or "ip6".

 LIMIT

 { "limit": {

 "family": STRING,

 "table": STRING, Page 13/32

 "name": STRING,

 "handle": NUMBER,

 "rate": NUMBER,

 "per": STRING,

 "burst": NUMBER,

 "unit": LIMIT_UNIT,

 "inv": BOOLEAN

 }}

 LIMIT_UNIT := "packets" | "bytes"

 This object represents a named limit.

 family

 The table?s family.

 table

 The table?s name.

 name

 The limit?s name.

 handle

 The limit?s handle. In input, it is used by the delete command

 only.

 rate

 The limit?s rate value.

 per

 Time unit to apply the limit to, e.g. "week", "day", "hour", etc.

 If omitted, defaults to "second".

 burst

 The limit?s burst value. If omitted, defaults to 0.

 unit

 Unit of rate and burst values. If omitted, defaults to "packets".

 inv

 If true, match if limit was exceeded. If omitted, defaults to

 false.

 CT TIMEOUT

 { "ct timeout": { Page 14/32

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "protocol": CTH_PROTO,

 "state": STRING,

 "value: NUMBER,

 "l3proto": STRING

 }}

 CTH_PROTO := "tcp" | "udp" | "dccp" | "sctp" | "gre" | "icmpv6" | "icmp" | "generic"

 This object represents a named conntrack timeout policy.

 family

 The table?s family.

 table

 The table?s name.

 name

 The ct timeout object?s name.

 handle

 The ct timeout object?s handle. In input, it is used by delete

 command only.

 protocol

 The ct timeout object?s layer 4 protocol.

 state

 The connection state name, e.g. "established", "syn_sent", "close"

 or "close_wait", for which the timeout value has to be updated.

 value

 The updated timeout value for the specified connection state.

 l3proto

 The ct timeout object?s layer 3 protocol, e.g. "ip" or "ip6".

 CT EXPECTATION

 { "ct expectation": {

 "family": STRING,

 "table": STRING, Page 15/32

 "name": STRING,

 "handle": NUMBER,

 "l3proto": STRING

 "protocol":* CTH_PROTO,

 "dport": NUMBER,

 "timeout: NUMBER,

 "size: NUMBER,

 *}}

 CTH_PROTO := "tcp" | "udp" | "dccp" | "sctp" | "gre" | "icmpv6" | "icmp" | "generic"

 This object represents a named conntrack expectation.

 family

 The table?s family.

 table

 The table?s name.

 name

 The ct expectation object?s name.

 handle

 The ct expectation object?s handle. In input, it is used by delete

 command only.

 l3proto

 The ct expectation object?s layer 3 protocol, e.g. "ip" or "ip6".

 protocol

 The ct expectation object?s layer 4 protocol.

 dport

 The destination port of the expected connection.

 timeout

 The time in millisecond that this expectation will live.

 size

 The maximum count of expectations to be living in the same time.

STATEMENTS

 Statements are the building blocks for rules. Each rule consists of at

 least one.

 VERDICT Page 16/32

 { "accept": null }

 { "drop": null }

 { "continue": null }

 { "return": null }

 { "jump": { "target": * STRING *}}

 { "goto": { "target": * STRING *}}

 A verdict either terminates packet traversal through the current chain

 or delegates to a different one.

 jump and goto statements expect a target chain name.

 MATCH

 { "match": {

 "left": EXPRESSION,

 "right": EXPRESSION,

 "op": STRING

 }}

 This matches the expression on left hand side (typically a packet

 header or packet meta info) with the expression on right hand side

 (typically a constant value). If the statement evaluates to true, the

 next statement in this rule is considered. If not, processing continues

 with the next rule in the same chain.

 left

 Left hand side of this match.

 right

 Right hand side of this match.

 op

 Operator indicating the type of comparison.

 OPERATORS

 & Binary AND

 | Binary OR

 ^ Binary XOR

 << Left shift

 >> Right shift

 == Equal Page 17/32

 != Not equal

 < Less than

 > Greater than

 ? Less than or equal to

 >= Greater than or equal to

 in Perform a lookup, i.e.

 test if bits on RHS are

 contained in LHS value

 Unlike with the standard API, the operator is mandatory here. In

 the standard API, a missing operator may be resolved in two ways,

 depending on the type of expression on the RHS:

 ? If the RHS is a bitmask or a list of bitmasks, the expression

 resolves into a binary operation with the inequality operator,

 like this: LHS & RHS != 0.

 ? In any other case, the equality operator is simply inserted.

 For the non-trivial first case, the JSON API supports the in

 operator.

 COUNTER

 { "counter": {

 "packets": NUMBER,

 "bytes": NUMBER

 }}

 { "counter": STRING }

 This object represents a byte/packet counter. In input, no properties

 are required. If given, they act as initial values for the counter.

 The first form creates an anonymous counter which lives in the rule it

 appears in. The second form specifies a reference to a named counter

 object.

 packets

 Packets counted.

 bytes

 Bytes counted.

 MANGLE Page 18/32

 { "mangle": {

 "key": EXPRESSION,

 "value": EXPRESSION

 }}

 This changes the packet data or meta info.

 key

 The packet data to be changed, given as an exthdr, payload, meta,

 ct or ct helper expression.

 value

 Value to change data to.

 QUOTA

 { "quota": {

 "val": NUMBER,

 "val_unit": STRING,

 "used": NUMBER,

 "used_unit": STRING,

 "inv": BOOLEAN

 }}

 { "quota": STRING }

 The first form creates an anonymous quota which lives in the rule it

 appears in. The second form specifies a reference to a named quota

 object.

 val

 Quota value.

 val_unit

 Unit of val, e.g. "kbytes" or "mbytes". If omitted, defaults to

 "bytes".

 used

 Quota used so far. Optional on input. If given, serves as initial

 value.

 used_unit

 Unit of used. Defaults to "bytes".

 inv Page 19/32

 If true, will match if quota was exceeded. Defaults to false.

 LIMIT

 { "limit": {

 "rate": NUMBER,

 "rate_unit": STRING,

 "per": STRING,

 "burst": NUMBER,

 "burst_unit": STRING,

 "inv": BOOLEAN

 }}

 { "limit": STRING }

 The first form creates an anonymous limit which lives in the rule it

 appears in. The second form specifies a reference to a named limit

 object.

 rate

 Rate value to limit to.

 rate_unit

 Unit of rate, e.g. "packets" or "mbytes". Defaults to "packets".

 per

 Denominator of rate, e.g. "week" or "minutes".

 burst

 Burst value. Defaults to 0.

 burst_unit

 Unit of burst, ignored if rate_unit is "packets". Defaults to

 "bytes".

 inv

 If true, matches if the limit was exceeded. Defaults to false.

 FWD

 { "fwd": {

 "dev": EXPRESSION,

 "family": FWD_FAMILY,

 "addr": EXPRESSION

 }} Page 20/32

 FWD_FAMILY := "ip" | "ip6"

 Forward a packet to a different destination.

 dev

 Interface to forward the packet on.

 family

 Family of addr.

 addr

 IP(v6) address to forward the packet to.

 Both family and addr are optional, but if at least one is given, both

 must be present.

 NOTRACK

 { "notrack": null }

 Disable connection tracking for the packet.

 DUP

 { "dup": {

 "addr": EXPRESSION,

 "dev": EXPRESSION

 }}

 Duplicate a packet to a different destination.

 addr

 Address to duplicate packet to.

 dev

 Interface to duplicate packet on. May be omitted to not specify an

 interface explicitly.

 NETWORK ADDRESS TRANSLATION

 { "snat": {

 "addr": EXPRESSION,

 "family": STRING,

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 { "dnat": {

 "addr": EXPRESSION, Page 21/32

 "family": STRING,

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 { "masquerade": {

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 { "redirect": {

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "random" | "fully-random" | "persistent"

 Perform Network Address Translation.

 addr

 Address to translate to.

 family

 Family of addr, either ip or ip6. Required in inet table family.

 port

 Port to translate to.

 flags

 Flag(s).

 All properties are optional and default to none.

 REJECT

 { "reject": {

 "type": STRING,

 "expr": EXPRESSION

 }}

 Reject the packet and send the given error reply.

 type

 Type of reject, either "tcp reset", "icmpx", "icmp" or "icmpv6". Page 22/32

 expr

 ICMP code to reject with.

 All properties are optional.

 SET

 { "set": {

 "op": STRING,

 "elem": EXPRESSION,

 "set": STRING

 }}

 Dynamically add/update elements to a set.

 op

 Operator on set, either "add" or "update".

 elem

 Set element to add or update.

 set

 Set reference.

 LOG

 { "log": {

 "prefix": STRING,

 "group": NUMBER,

 "snaplen": NUMBER,

 "queue-threshold": NUMBER,

 "level": LEVEL,

 "flags": FLAGS

 }}

 LEVEL := "emerg" | "alert" | "crit" | "err" | "warn" | "notice" |

 "info" | "debug" | "audit"

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "tcp sequence" | "tcp options" | "ip options" | "skuid" |

 "ether" | "all"

 Log the packet.

 prefix Page 23/32

 Prefix for log entries.

 group

 Log group.

 snaplen

 Snaplen for logging.

 queue-threshold

 Queue threshold.

 level

 Log level. Defaults to "warn".

 flags

 Log flags.

 All properties are optional.

 CT HELPER

 { "ct helper": EXPRESSION }

 Enable the specified conntrack helper for this packet.

 ct helper

 CT helper reference.

 METER

 { "meter": {

 "name": STRING,

 "key": EXPRESSION,

 "stmt": STATEMENT

 }}

 Apply a given statement using a meter.

 name

 Meter name.

 key

 Meter key.

 stmt

 Meter statement.

 QUEUE

 { "queue": {

 "num": EXPRESSION, Page 24/32

 "flags": FLAGS

 }}

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "bypass" | "fanout"

 Queue the packet to userspace.

 num

 Queue number.

 flags

 Queue flags.

 VERDICT MAP

 { "vmap": {

 "key": EXPRESSION,

 "data": EXPRESSION

 }}

 Apply a verdict conditionally.

 key

 Map key.

 data

 Mapping expression consisting of value/verdict pairs.

 CT COUNT

 { "ct count": {

 "val": NUMBER,

 "inv": BOOLEAN

 }}

 Limit the number of connections using conntrack.

 val

 Connection count threshold.

 inv

 If true, match if val was exceeded. If omitted, defaults to false.

 CT TIMEOUT

 { "ct timeout": EXPRESSION }

 Assign connection tracking timeout policy. Page 25/32

 ct timeout

 CT timeout reference.

 CT EXPECTATION

 { "ct expectation": EXPRESSION }

 Assign connection tracking expectation.

 ct expectation

 CT expectation reference.

 XT

 { "xt": null }

 This represents an xt statement from xtables compat interface. Sadly,

 at this point, it is not possible to provide any further information

 about its content.

EXPRESSIONS

 Expressions are the building blocks of (most) statements. In their most

 basic form, they are just immediate values represented as a JSON

 string, integer or boolean type.

 IMMEDIATES

 STRING

 NUMBER

 BOOLEAN

 Immediate expressions are typically used for constant values. For

 strings, there are two special cases:

 @STRING

 The remaining part is taken as set name to create a set reference.

 *

 Construct a wildcard expression.

 LISTS

 ARRAY

 List expressions are constructed by plain arrays containing of an

 arbitrary number of expressions.

 CONCAT

 { "concat": CONCAT }

 CONCAT := [EXPRESSION_LIST] Page 26/32

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION_LIST]

 Concatenate several expressions.

 SET

 { "set": SET }

 SET := EXPRESSION | [EXPRESSION_LIST]

 This object constructs an anonymous set. For mappings, an array of

 arrays with exactly two elements is expected.

 MAP

 { "map": {

 "key": EXPRESSION,

 "data": EXPRESSION

 }}

 Map a key to a value.

 key

 Map key.

 data

 Mapping expression consisting of value/target pairs.

 PREFIX

 { "prefix": {

 "addr": EXPRESSION,

 "len": NUMBER

 }}

 Construct an IPv4 or IPv6 prefix consisting of address part in addr and

 prefix length in len.

 RANGE

 { "range": [EXPRESSION , EXPRESSION] }

 Construct a range of values. The first array item denotes the lower

 boundary, the second one the upper boundary.

 PAYLOAD

 { "payload": {

 "base": BASE,

 "offset": NUMBER,

 "len": NUMBER Page 27/32

 }}

 { "payload": {

 "protocol": STRING,

 "field": STRING

 }}

 BASE := "ll" | "nh" | "th"

 Construct a payload expression, i.e. a reference to a certain part of

 packet data. The first form creates a raw payload expression to point

 at a random number (len) of bytes at a certain offset (offset) from a

 given reference point (base). The following base values are accepted:

 "ll"

 The offset is relative to Link Layer header start offset.

 "nh"

 The offset is relative to Network Layer header start offset.

 "th"

 The offset is relative to Transport Layer header start offset.

 The second form allows to reference a field by name (field) in a named

 packet header (protocol).

 EXTHDR

 { "exthdr": {

 "name": STRING,

 "field": STRING,

 "offset": NUMBER

 }}

 Create a reference to a field (field) in an IPv6 extension header

 (name). offset is used only for rt0 protocol.

 If the field property is not given, the expression is to be used as a

 header existence check in a match statement with a boolean on the right

 hand side.

 TCP OPTION

 { "tcp option": {

 "name": STRING,

 "field": STRING Page 28/32

 }}

 Create a reference to a field (field) of a TCP option header (name).

 If the field property is not given, the expression is to be used as a

 TCP option existence check in a match statement with a boolean on the

 right hand side.

 SCTP CHUNK

 { "sctp chunk": {

 "name": STRING,

 "field": STRING

 }}

 Create a reference to a field (field) of an SCTP chunk (name).

 If the field property is not given, the expression is to be used as an

 SCTP chunk existence check in a match statement with a boolean on the

 right hand side.

 META

 { "meta": {

 "key": META_KEY

 }}

 META_KEY := "length" | "protocol" | "priority" | "random" | "mark" |

 "iif" | "iifname" | "iiftype" | "oif" | "oifname" |

 "oiftype" | "skuid" | "skgid" | "nftrace" |

 "rtclassid" | "ibriport" | "obriport" | "ibridgename" |

 "obridgename" | "pkttype" | "cpu" | "iifgroup" |

 "oifgroup" | "cgroup" | "nfproto" | "l4proto" |

 "secpath"

 Create a reference to packet meta data.

 RT

 { "rt": {

 "key": RT_KEY,

 "family": RT_FAMILY

 }}

 RT_KEY := "classid" | "nexthop" | "mtu"

 RT_FAMILY := "ip" | "ip6" Page 29/32

 Create a reference to packet routing data.

 The family property is optional and defaults to unspecified.

 CT

 { "ct": {

 "key": STRING,

 "family": CT_FAMILY,

 "dir": CT_DIRECTION

 }}

 CT_FAMILY := "ip" | "ip6"

 CT_DIRECTION := "original" | "reply"

 Create a reference to packet conntrack data.

 Some CT keys do not support a direction. In this case, dir must not be

 given.

 NUMGEN

 { "numgen": {

 "mode": NG_MODE,

 "mod": NUMBER,

 "offset": NUMBER

 }}

 NG_MODE := "inc" | "random"

 Create a number generator.

 The offset property is optional and defaults to 0.

 HASH

 { "jhash": {

 "mod": NUMBER,

 "offset": NUMBER,

 "expr": EXPRESSION,

 "seed": NUMBER

 }}

 { "symhash": {

 "mod": NUMBER,

 "offset": NUMBER

 }} Page 30/32

 Hash packet data.

 The offset and seed properties are optional and default to 0.

 FIB

 { "fib": {

 "result": FIB_RESULT,

 "flags": FIB_FLAGS

 }}

 FIB_RESULT := "oif" | "oifname" | "type"

 FIB_FLAGS := FIB_FLAG | [FIB_FLAG_LIST]

 FIB_FLAG_LIST := FIB_FLAG [, FIB_FLAG_LIST]

 FIB_FLAG := "saddr" | "daddr" | "mark" | "iif" | "oif"

 Perform kernel Forwarding Information Base lookups.

 BINARY OPERATION

 { "|": [EXPRESSION, EXPRESSION] }

 { "^": [EXPRESSION, EXPRESSION] }

 { "&": [EXPRESSION, EXPRESSION] }

 { "<<": [EXPRESSION, EXPRESSION] }

 { ">>": [EXPRESSION, EXPRESSION] }

 All binary operations expect an array of exactly two expressions, of

 which the first element denotes the left hand side and the second one

 the right hand side.

 VERDICT

 { "accept": null }

 { "drop": null }

 { "continue": null }

 { "return": null }

 { "jump": { "target": STRING }}

 { "goto": { "target": STRING }}

 Same as the verdict statement, but for use in verdict maps.

 jump and goto verdicts expect a target chain name.

 ELEM

 { "elem": {

 "val": EXPRESSION, Page 31/32

 "timeout": NUMBER,

 "expires": NUMBER,

 "comment": STRING

 }}

 Explicitly set element object, in case timeout, expires or comment are

 desired. Otherwise, it may be replaced by the value of val.

 SOCKET

 { "socket": {

 "key": SOCKET_KEY

 }}

 SOCKET_KEY := "transparent"

 Construct a reference to packet?s socket.

 OSF

 { "osf": {

 "key": OSF_KEY,

 "ttl": OSF_TTL

 }}

 OSF_KEY := "name"

 OSF_TTL := "loose" | "skip"

 Perform OS fingerprinting. This expression is typically used in the LHS

 of a match statement.

 key

 Which part of the fingerprint info to match against. At this point,

 only the OS name is supported.

 ttl

 Define how the packet?s TTL value is to be matched. This property

 is optional. If omitted, the TTL value has to match exactly. A

 value of loose accepts TTL values less than the fingerprint one. A

 value of skip omits TTL value comparison entirely.

AUTHOR

 Phil Sutter <phil@nwl.cc>

 Author.

 06/07/2022 LIBNFTABLES-JSON(5) Page 32/32

