
Rocky Enterprise Linux 9.2 Manual Pages on command 'mount.fuse.8'

$ man mount.fuse.8

fuse(8) System Manager's Manual fuse(8)

NAME

 fuse - format and options for the fuse file systems

DESCRIPTION

 FUSE (Filesystem in Userspace) is a simple interface for userspace pro?

 grams to export a virtual filesystem to the Linux kernel. FUSE also

 aims to provide a secure method for non privileged users to create and

 mount their own filesystem implementations.

CONFIGURATION

 Some options regarding mount policy can be set in the file

 /etc/fuse.conf. Currently these options are:

 mount_max = NNN

 Set the maximum number of FUSE mounts allowed to non-root users.

 The default is 1000.

 user_allow_other

 Allow non-root users to specify the allow_other or allow_root

 mount options (see below).

OPTIONS Page 1/7

 Most of the generic mount options described in mount are supported (ro,

 rw, suid, nosuid, dev, nodev, exec, noexec, atime, noatime, sync,

 async, dirsync). Filesystems are mounted with nodev,nosuid by default,

 which can only be overridden by a privileged user.

 General mount options:

 These are FUSE specific mount options that can be specified for all

 filesystems:

 default_permissions

 By default FUSE doesn't check file access permissions, the

 filesystem is free to implement it's access policy or leave it

 to the underlying file access mechanism (e.g. in case of network

 filesystems). This option enables permission checking, restrict?

 ing access based on file mode. This is option is usually useful

 together with the allow_other mount option.

 allow_other

 This option overrides the security measure restricting file ac?

 cess to the user mounting the filesystem. So all users (includ?

 ing root) can access the files. This option is by default only

 allowed to root, but this restriction can be removed with a con?

 figuration option described in the previous section.

 allow_root

 This option is similar to allow_other but file access is limited

 to the user mounting the filesystem and root. This option and

 allow_other are mutually exclusive.

 kernel_cache

 This option disables flushing the cache of the file contents on

 every open(2). This should only be enabled on filesystems,

 where the file data is never changed externally (not through the

 mounted FUSE filesystem). Thus it is not suitable for network

 filesystems and other intermediate filesystems.

 NOTE: if this option is not specified (and neither direct_io)

 data is still cached after the open(2), so a read(2) system call

 will not always initiate a read operation. Page 2/7

 auto_cache

 This option enables automatic flushing of the data cache on

 open(2). The cache will only be flushed if the modification time

 or the size of the file has changed.

 large_read

 Issue large read requests. This can improve performance for

 some filesystems, but can also degrade performance. This option

 is only useful on 2.4.X kernels, as on 2.6 kernels requests size

 is automatically determined for optimum performance.

 direct_io

 This option disables the use of page cache (file content cache)

 in the kernel for this filesystem. This has several affects:

 1. Each read(2) or write(2) system call will initiate one or more

 read or write operations, data will not be cached in the kernel.

 2. The return value of the read() and write() system calls will

 correspond to the return values of the read and write opera?

 tions. This is useful for example if the file size is not known

 in advance (before reading it).

 max_read=N

 With this option the maximum size of read operations can be set.

 The default is infinite. Note that the size of read requests is

 limited anyway to 32 pages (which is 128kbyte on i386).

 max_readahead=N

 Set the maximum number of bytes to read-ahead. The default is

 determined by the kernel. On linux-2.6.22 or earlier it's 131072

 (128kbytes)

 max_write=N

 Set the maximum number of bytes in a single write operation. The

 default is 128kbytes. Note, that due to various limitations,

 the size of write requests can be much smaller (4kbytes). This

 limitation will be removed in the future.

 async_read

 Perform reads asynchronously. This is the default Page 3/7

 sync_read

 Perform all reads (even read-ahead) synchronously.

 hard_remove

 The default behavior is that if an open file is deleted, the

 file is renamed to a hidden file (.fuse_hiddenXXX), and only re?

 moved when the file is finally released. This relieves the

 filesystem implementation of having to deal with this problem.

 This option disables the hiding behavior, and files are removed

 immediately in an unlink operation (or in a rename operation

 which overwrites an existing file).

 It is recommended that you not use the hard_remove option. When

 hard_remove is set, the following libc functions fail on un?

 linked files (returning errno of ENOENT): read(2), write(2),

 fsync(2), close(2), f*xattr(2), ftruncate(2), fstat(2), fch?

 mod(2), fchown(2)

 debug Turns on debug information printing by the library.

 fsname=NAME

 Sets the filesystem source (first field in /etc/mtab). The de?

 fault is the mount program name.

 subtype=TYPE

 Sets the filesystem type (third field in /etc/mtab). The default

 is the mount program name. If the kernel suppports it, /etc/mtab

 and /proc/mounts will show the filesystem type as fuse.TYPE

 If the kernel doesn't support subtypes, the source filed will be

 TYPE#NAME, or if fsname option is not specified, just TYPE.

 use_ino

 Honor the st_ino field in kernel functions getattr() and

 fill_dir(). This value is used to fill in the st_ino field in

 the stat(2), lstat(2), fstat(2) functions and the d_ino field in

 the readdir(2) function. The filesystem does not have to guaran?

 tee uniqueness, however some applications rely on this value be?

 ing unique for the whole filesystem.

 readdir_ino Page 4/7

 If use_ino option is not given, still try to fill in the d_ino

 field in readdir(2). If the name was previously looked up, and

 is still in the cache, the inode number found there will be

 used. Otherwise it will be set to -1. If use_ino option is

 given, this option is ignored.

 nonempty

 Allows mounts over a non-empty file or directory. By default

 these mounts are rejected to prevent accidental covering up of

 data, which could for example prevent automatic backup.

 umask=M

 Override the permission bits in st_mode set by the filesystem.

 The resulting permission bits are the ones missing from the

 given umask value. The value is given in octal representation.

 uid=N Override the st_uid field set by the filesystem (N is numeric).

 gid=N Override the st_gid field set by the filesystem (N is numeric).

 blkdev Mount a filesystem backed by a block device. This is a privi?

 leged option. The device must be specified with the fsname=NAME

 option.

 entry_timeout=T

 The timeout in seconds for which name lookups will be cached.

 The default is 1.0 second. For all the timeout options, it is

 possible to give fractions of a second as well (e.g. entry_time?

 out=2.8)

 negative_timeout=T

 The timeout in seconds for which a negative lookup will be

 cached. This means, that if file did not exist (lookup retuned

 ENOENT), the lookup will only be redone after the timeout, and

 the file/directory will be assumed to not exist until then. The

 default is 0.0 second, meaning that caching negative lookups are

 disabled.

 attr_timeout=T

 The timeout in seconds for which file/directory attributes are

 cached. The default is 1.0 second. Page 5/7

 ac_attr_timeout=T

 The timeout in seconds for which file attributes are cached for

 the purpose of checking if auto_cache should flush the file data

 on open. The default is the value of attr_timeout

 intr Allow requests to be interrupted. Turning on this option may

 result in unexpected behavior, if the filesystem does not sup?

 port request interruption.

 intr_signal=NUM

 Specify which signal number to send to the filesystem when a re?

 quest is interrupted. The default is hardcoded to USR1.

 modules=M1[:M2...]

 Add modules to the filesystem stack. Modules are pushed in the

 order they are specified, with the original filesystem being on

 the bottom of the stack.

FUSE MODULES (STACKING)

 Modules are filesystem stacking support to high level API. Filesystem

 modules can be built into libfuse or loaded from shared object

 iconv

 Perform file name character set conversion. Options are:

 from_code=CHARSET

 Character set to convert from (see iconv -l for a list of possi?

 ble values). Default is UTF-8.

 to_code=CHARSET

 Character set to convert to. Default is determined by the cur?

 rent locale.

 subdir

 Prepend a given directory to each path. Options are:

 subdir=DIR

 Directory to prepend to all paths. This option is mandatory.

 rellinks

 Transform absolute symlinks into relative

 norellinks

 Do not transform absolute symlinks into relative. This is the Page 6/7

 default.

SECURITY

 The fusermount program is installed set-user-gid to fuse. This is done

 to allow users from fuse group to mount their own filesystem implemen?

 tations. There must however be some limitations, in order to prevent

 Bad User from doing nasty things. Currently those limitations are:

 1. The user can only mount on a mountpoint, for which it has write

 permission

 2. The mountpoint is not a sticky directory which isn't owned by

 the user (like /tmp usually is)

 3. No other user (including root) can access the contents of the

 mounted filesystem.

NOTE

 FUSE filesystems are unmounted using the fusermount(1) command (fuser?

 mount -u mountpoint).

AUTHORS

 The main author of FUSE is Miklos Szeredi <mszeredi@inf.bme.hu>.

 This man page was written by Bastien Roucaries <roucaries.bastien+de?

 bian@gmail.com> for the Debian GNU/Linux distribution (but it may be

 used by others) from README file.

SEE ALSO

 fusermount(1) mount(8)

 fuse(8)

Page 7/7

