FPDF Libcary

PDF generator

b

Full credit is given to the above companies including the 0§
that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'org.freedesktop.loginl.5'
$ man org.freedesktop.loginl.5
ORG.FREEDESKTOP.LOGIN1(5) org.freedesktop.loginl ORG.FREEDESKTOP.LOGIN1(5)
NAME
org.freedesktop.loginl - The D-Bus interface of systemd-logind
INTRODUCTION
systemd-logind.service(8) is a system service that keeps track of user
logins and seats.
The daemon provides both a C library interface as well as a D-Bus
interface. The library interface may be used to introspect and watch
the state of user logins and seats. The bus interface provides the same
functionality but in addition may also be used to make changes to the
system state. For more information please consult sd-login(3).
THE MANAGER OBJECT
The service exposes the following interfaces on the Manager object on
the bus:
node /org/freedesktop/loginl {
interface org.freedesktop.loginl.Manager {
methods:

GetSession(in s session_id, Page 1/27

out o object_path);
GetSessionByPID(in u pid,
out o object_path);
GetUser(in u uid,
out o object_path);
GetUserByPID(in u pid,
out o object_path);
GetSeat(in s seat_id,
out o object_path);
ListSessions(out a(susso) sessions);
ListUsers(out a(uso) users);
ListSeats(out a(so) seats);
ListInhibitors(out a(ssssuu) inhibitors);
@org.freedesktop.systemd1.Privileged("true")
CreateSession(in u uid,
in u pid,
in s service,
in s type,
in s class,
in s desktop,
in s seat_id,
in uvtnr,
in s tty,
in s display,
in b remote,
in s remote_user,
in s remote_host,
in a(sv) properties,
out s session_id,
out o object_path,
out s runtime_path,

out h fifo_fd,

out u uid, Page 2/27

out s seat_id,
out u vtnr,
out b existing);
@org.freedesktop.systemd1.Privileged("true")
ReleaseSession(in s session_id);
ActivateSession(in s session_id);
ActivateSessionOnSeat(in s session_id,
in s seat_id);
LockSession(in s session_id);
UnlockSession(in s session_id);
LockSessions();
UnlockSessions();
KillSession(in s session_id,
in s who,
in i signal_number);
KillUser(in u uid,
in i signal_number);
TerminateSession(in s session_id);
TerminateUser(in u uid);
TerminateSeat(in s seat _id);
SetUserLinger(in u uid,
in b enable,
in b interactive);
AttachDevice(in s seat_id,
in s sysfs_path,
in b interactive);
FlushDevices(in b interactive);
PowerOff(in b interactive);
PowerOffWithFlags(in t flags);
Reboot(in b interactive);
RebootWithFlags(in t flags);
Halt(in b interactive);

HaltwithFlags(in t flags);

Page 3/27

Suspend(in b interactive);
SuspendWithFlags(in t flags);
Hibernate(in b interactive);
HibernateWithFlags(in t flags);
HybridSleep(in b interactive);
HybridSleepWithFlags(in t flags);
SuspendThenHibernate(in b interactive);
SuspendThenHibernateWithFlags(in t flags);
CanPowerOff(out s result);
CanReboot(out s result);
CanHalt(out s result);
CanSuspend(out s result);
CanHibernate(out s result);
CanHybridSleep(out s result);
CanSuspendThenHibernate(out s result);
ScheduleShutdown(in s type,
in tusec);

CancelScheduledShutdown(out b cancelled);
Inhibit(in s what,

in s who,

in s why,

in s mode,

out h pipe_fd);
CanRebootParameter(out s result);
SetRebootParameter(in s parameter);
CanRebootToFirmwareSetup(out s result);
SetRebootToFirmwareSetup(in b enable);
CanRebootToBootLoaderMenu(out s result);
SetRebootToBootLoaderMenu(in t timeout);
CanRebootToBootLoaderEntry(out s result);
SetRebootToBootLoaderEntry(in s boot_loader_entry);
SetWallMessage(in s wall_message,

in b enable); Page 4/27

signals:
SessionNew(s session_id,

0 object_path);
SessionRemoved(s session_id,

0 object_path);
UserNew(u uid,
0 object_path);
UserRemoved(u uid,

o object_path);
SeatNew(s seat _id,

0 object_path);
SeatRemoved(s seat_id,

o object_path);
PrepareForShutdown(b start);
PrepareForSleep(b start);

properties:
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
@org.freedesktop.systemd1.Privileged("true")
readwrite b EnableWallMessages = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
@org.freedesktop.systemd1.Privileged("true")

readwrite s WallMessage ="...";

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

readonly u NAutoVTs = ..,;

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

readonly as KillOnlyUsers =[...", ...];

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

readonly as KillExcludeUsers =[...", ...];

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

readonly b KillUserProcesses = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly s RebootParameter ="...";

@org.freedesktop.DBus.Property. EmitsChangedSignal(“false")

Page 5/27

readonly b RebootToFirmwareSetup = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly t RebootToBootLoaderMenu = ..;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly s RebootToBootLoaderEntry ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly as BootLoaderEntries = ["...", ...];

readonly b IdleHint = ...;

readonly t IdleSinceHint = ...;

readonly t IdleSinceHintMonotonic = ...;

readonly s BlockInhibited ="...";

readonly s Delaylnhibited ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t InhibitDelayMaxUSec = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t UserStopDelayUSec = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandlePowerKey ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandlePowerKeyLongPress ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleRebootKey ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleRebootKeyLongPress ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleSuspendKey ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleSuspendKeyLongPress ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleHibernateKey ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleHibernateKeyLongPress ="...";

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

Page 6/27

readonly s HandleLidSwitch ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleLidSwitchExternalPower ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s HandleLidSwitchDocked ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t HoldoffTimeoutUSec = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly s IdleAction ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t IdleActionUSec = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly b PreparingForShutdown = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly b PreparingForSleep = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly (st) ScheduledShutdown = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly b Docked = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly b LidClosed = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly b OnExternalPower = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly b RemovelPC = ..,;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly t RuntimeDirectorySize = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly t RuntimeDirectorylnodesMax = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly t InhibitorsMax = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")

readonly t NCurrentIinhibitors = ...;

Page 7/27

@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly t SessionsMax = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false™)
readonly t NCurrentSessions = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const”)
readonly t StopldleSessionUSec = ...;
h
interface org.freedesktop.DBus.Peer { ... };
interface org.freedesktop.DBus.Introspectable { ... };
interface org.freedesktop.DBus.Properties { ... };
h
Methods
GetSession() may be used to get the session object path for the session
with the specified ID. Similarly, GetUser() and GetSeat() get the user
and seat objects, respectively. GetSessionByPID() and GetUserByPID()
get the session/user object the specified PID belongs to if there is
any.
ListSessions() returns an array of all current sessions. The structures
in the array consist of the following fields: session id, user id, user
name, seat id, session object path. If a session does not have a seat
attached, the seat id field will be an empty string.
ListUsers() returns an array of all currently logged in users. The
structures in the array consist of the following fields: user id, user
name, user object path.
ListSeats() returns an array of all currently available seats. The
structure in the array consists of the following fields: seat id, seat
object path.
ListInhibitors() lists all currently active inhibitors. It returns an
array of structures consisting of what, who, why, mode, uid (user ID),
and pid (process ID).
CreateSession() and ReleaseSession() may be used to open or close login
sessions. These calls should never be invoked directly by clients.

Creating/closing sessions is exclusively the job of PAM and its Page 8/27

pam_systemd(8) module.

ActivateSession() brings the session with the specified ID into the
foreground. ActivateSessionOnSeat() does the same, but only if the
seat id matches.

LockSession() asks the session with the specified ID to activate the
screen lock. UnlockSession() asks the session with the specified ID to
remove an active screen lock, if there is any. This is implemented by
sending out the Lock() and Unlock() signals from the respective session
object which session managers are supposed to listen on.
LockSessions() asks all sessions to activate their screen locks. This
may be used to lock access to the entire machine in one action.
Similarly, UnlockSessions() asks all sessions to deactivate their

screen locks.

KillSession() may be used to send a Unix signal to one or all processes
of a session. As arguments it takes the session id, either the string
"leader” or "all" and a signal number. If "leader" is passed only the
session "leader" is killed. If "all" is passed all processes of the

session are killed.

KillUser() may be used to send a Unix signal to all processes of a

user. As arguments it takes the user id and a signal number.
TerminateSession(), TerminateUser(), TerminateSeat() may be used to
forcibly terminate one specific session, all processes of a user, and

all sessions attached to a specific seat, respectively. The session,
user, and seat are identified by their respective IDs.

SetUserLinger() enables or disables user lingering. If enabled, the
runtime directory of a user is kept around and they may continue to run

processes while logged out. If disabled, the runtime directory goes

away as soon as they log out. SetUserLinger() expects three arguments:

the UID, a boolean whether to enable/disable and a boolean controlling
the polkit[1] authorization interactivity (see below). Note that the

user linger state is persistently stored on disk.

AttachDevice() may be used to assign a specific device to a specific

seat. The device is identified by its /sys/ path and must be eligible

Page 9/27

for seat assignments. AttachDevice() takes three arguments: the seat
id, the sysfs path, and a boolean for controlling polkit interactivity
(see below). Device assignments are persistently stored on disk. To
create a new seat, simply specify a previously unused seat id. For more
information about the seat assignment logic see sd-login(3).
FlushDevices() removes all explicit seat assignments for devices,
resetting all assignments to the automatic defaults. The only argument
it takes is the polkit interactivity boolean (see below).
PowerOff(), Reboot(), Halt(), Suspend(), and Hibernate() result in the
system being powered off, rebooted, halted (shut down without turning
off power), suspended (the system state is saved to RAM and the CPU is
turned off), or hibernated (the system state is saved to disk and the
machine is powered down). HybridSleep() results in the system entering
a hybrid-sleep mode, i.e. the system is both hibernated and suspended.
SuspendThenHibernate() results in the system being suspended, then
later woken using an RTC timer and hibernated. The only argument is the
polkit interactivity boolean interactive (see below). The main purpose
of these calls is that they enforce polkit policy and hence allow
powering off/rebooting/suspending/hibernating even by unprivileged
users. They also enforce inhibition locks for non-privileged users. Uls
should expose these calls as the primary mechanism to
poweroff/reboot/suspend/hibernate the machine. Methods
PowerOffWithFlags(), RebootWithFlags(), HaltWithFlags(),
SuspendWithFlags(), HibernateWithFlags(), HybridSleepWithFlags() and
SuspendThenHibernateWithFlags() add flags to allow for extendability,
defined as follows:

#define SD_LOGIND_ROOT_CHECK_INHIBITORS (UINT64_C(1) << 0)

#define SD_LOGIND_KEXEC_REBOOT (UINT64_C(1) << 1)
When the flags is 0 then these methods behave just like the versions
without flags. When SD_LOGIND_ROOT_CHECK_INHIBITORS (0x01) is set,
active inhibitors are honoured for privileged users too. When
SD_LOGIND_KEXEC_REBOOT (0x02) is set, then RebootWithFlags() perform

kexec reboot if kexec kernel is loaded. Page 10/27

SetRebootParameter() sets a parameter for a subsequent reboot
operation. See the description of reboot in systemctl(1) and reboot(2)

for more information.

SetRebootToFirmwareSetup(), SetRebootToBootLoaderMenu(), and
SetRebootToBootLoaderEntry() configure the action to be taken from the
boot loader after a reboot: respectively entering firmware setup mode,
the boot loader menu, or a specific boot loader entry. See systemctl(1)
for the corresponding command line interface.

CanPowerOff(), CanReboot(), CanHalt(), CanSuspend(), CanHibernate(),
CanHybridSleep(), CanSuspendThenHibernate(), CanRebootParameter(),
CanRebootToFirmwareSetup(), CanRebootToBootLoaderMenu(), and
CanRebootToBootLoaderEntry() test whether the system supports the
respective operation and whether the calling user is allowed to execute

it. Returns one of "na", "yes", "no", and "challenge". If "na" is

returned, the operation is not available because hardware, kernel, or
drivers do not support it. If "yes" is returned, the operation is

supported and the user may execute the operation without further
authentication. If "no" is returned, the operation is available but the

user is not allowed to execute the operation. If "challenge” is

returned, the operation is available but only after authorization.
ScheduleShutdown() schedules a shutdown operation type at time usec in
microseconds since the UNIX epoch. type can be one of "poweroff",
"dry-poweroff", "reboot", "dry-reboot”, "halt", and "dry-halt". (The

"dry-" variants do not actually execute the shutdown action.)
CancelScheduledShutdown() cancels a scheduled shutdown. The output
parameter cancelled is true if a shutdown operation was scheduled.
SetWallMessage() sets the wall message (the message that will be sent
out to all terminals and stored in a utmp(5) record) for a subsequent
scheduled shutdown operation. The parameter wall_message specifies the
shutdown reason (and may be empty) which will be included in the
shutdown message. The parameter enable specifies whether to print a
wall message on shutdown.

Inhibit() creates an inhibition lock. It takes four parameters: what, Page 11/27

who, why, and mode. what is one or more of "shutdown", "sleep”,

"idle", "handle-power-key", "handle-suspend-key",
"handle-hibernate-key", "handle-lid-switch”, separated by colons, for
inhibiting poweroff/reboot, suspend/hibernate, the automatic idle
logic, or hardware key handling. who should be a short human readable
string identifying the application taking the lock. why should be a
short human readable string identifying the reason why the lock is
taken. Finally, mode is either "block" or "delay" which encodes whether
the inhibit shall be consider mandatory or whether it should just delay
the operation to a certain maximum time. The method returns a file
descriptor. The lock is released the moment this file descriptor and
all its duplicates are closed. For more information on the inhibition
logic see Inhibitor Locks[2].

Signals
Whenever the inhibition state or idle hint changes, PropertyChanged
signals are sent out to which clients can subscribe.
The SessionNew, SessionRemoved, UserNew, UserRemoved, SeatNew, and
SeatRemoved signals are sent each time a session is created or removed,
a user logs in or out, or a seat is added or removed. They each contain
the ID of the object plus the object path.
The PrepareForShutdown() and PrepareForSleep() signals are sent right
before (with the argument "true") or after (with the argument "false")
the system goes down for reboot/poweroff and suspend/hibernate,
respectively. This may be used by applications to save data on disk,
release memory, or do other jobs that should be done shortly before
shutdown/sleep, in conjunction with delay inhibitor locks. After
completion of this work they should release their inhibition locks in
order to not delay the operation any further. For more information see
Inhibitor Locks[2].

Properties
Most properties simply reflect the configuration, see logind.conf(5).
This includes: NAutoVTs, KillOnlyUsers, KillExcludeUsers,

KillUserProcesses, ldleAction, InhibitDelayMaxUSec, InhibitorsMax, Page 12/27

UserStopDelayUSec, HandlePowerKey, HandleSuspendKey,
HandleHibernateKey, HandleLidSwitch, HandleLidSwitchExternalPower,
HandleLidSwitchDocked, IdleActionUSec, HoldoffTimeoutUSec, RemovelPC,
RuntimeDirectorySize, RuntimeDirectorylnodesMax, InhibitorsMax, and
SessionsMax.

The IdleHint property reflects the idle hint state of the system. If

the system is idle it might get into automatic suspend or shutdown
depending on the configuration.

IdleSinceHint and IdleSinceHintMonotonic encode the timestamps of the
last change of the idle hint boolean, in CLOCK_REALTIME and
CLOCK_MONOTONIC timestamps, respectively, in microseconds since the
epoch.

The BlockInhibited and DelayInhibited properties encode the currently
active locks of the respective modes. They are colon separated lists of
"shutdown", "sleep"”, and "idle" (see above).

NCurrentSessions and NCurrentinhibitors contain the number of currently
registered sessions and inhibitors.

The BootLoaderEntries property contains a list of boot loader entries.

This includes boot loader entries defined in configuration and any
additional loader entries reported by the boot loader. See systemd-

boot(7) for more information.

The PreparingForShutdown and PreparingForSleep boolean properties are
true during the interval between the two PrepareForShutdown and
PrepareForSleep signals respectively. Note that these properties do not
send out PropertyChanged signals.

The RebootParameter property shows the value set with the
SetRebootParameter() method described above.

ScheduledShutdown shows the value pair set with the ScheduleShutdown()
method described above.

RebootToFirmwareSetup, RebootToBootLoaderMenu, and
RebootToBootLoaderEntry are true when the resprective post-reboot
operation was selected with SetRebootToFirmwareSetup,

SetRebootToBootLoaderMenu, or SetRebootToBootLoaderEntry.

Page 13/27

The WallMessage and EnableWallMessages properties reflect the shutdown
reason and wall message enablement switch which can be set with the
SetWallMessage() method described above.
Docked is true if the machine is connected to a dock. LidClosed is
true when the lid (of a laptop) is closed. OnExternalPower is true
when the machine is connected to an external power supply.
Security
A number of operations are protected via the polkit privilege system.
SetUserLinger() requires the org.freedesktop.loginl.set-user-linger
privilege. AttachDevice() requires
org.freedesktop.loginl.attach-device and FlushDevices() requires
org.freedesktop.loginl.flush-devices. PowerOff(), Reboot(), Halt(),
Suspend(), Hibernate() require org.freedesktop.loginl.power-off,
org.freedesktop.loginl.power-off-multiple-sessions,
org.freedesktop.loginl.power-off-ignore-inhibit,
org.freedesktop.loginl.reboot,
org.freedesktop.loginl.reboot-multiple-sessions,
org.freedesktop.loginl.reboot-ignore-inhibit,
org.freedesktop.loginl.halt,
org.freedesktop.loginl.halt-multiple-sessions,
org.freedesktop.loginl.halt-ignore-inhibit,
org.freedesktop.loginl.suspend,
org.freedesktop.loginl.suspend-multiple-sessions,
org.freedesktop.loginl.suspend-ignore-inhibit,
org.freedesktop.loginl.hibernate,
org.freedesktop.loginl.hibernate-multiple-sessions,
org.freedesktop.loginl.hibernate-ignore-inhibit, respectively depending
on whether there are other sessions around or active inhibits are
present. HybridSleep() and SuspendThenHibernate() use the same
privileges as Hibernate(). SetRebootParameter() requires
org.freedesktop.loginl.set-reboot-parameter.
SetRebootToFirmwareSetup requires

org.freedesktop.loginl.set-reboot-to-firmware-setup. Page 14/27

SetRebootToBootLoaderMenu requires
org.freedesktop.loginl.set-reboot-to-boot-loader-menu.
SetRebootToBootLoaderEntry requires
org.freedesktop.loginl.set-reboot-to-boot-loader-entry.
ScheduleShutdown and CancelScheduledShutdown require the same
privileges (listed above) as the immediate poweroff/reboot/halt
operations.
Inhibit() is protected via one of
org.freedesktop.loginl.inhibit-block-shutdown,
org.freedesktop.loginl.inhibit-delay-shutdown,
org.freedesktop.loginl.inhibit-block-sleep,
org.freedesktop.loginl.inhibit-delay-sleep,
org.freedesktop.loginl.inhibit-block-idle,
org.freedesktop.loginl.inhibit-handle-power-key,
org.freedesktop.loginl.inhibit-handle-suspend-key,
org.freedesktop.loginl.inhibit-handle-hibernate-key,
org.freedesktop.loginl.inhibit-handle-lid-switch depending on the lock
type and mode taken.
The interactive boolean parameters can be used to control whether
polkit should interactively ask the user for authentication credentials
if required.
SEAT OBJECTS
node /org/freedesktop/loginl/seat/seatO {
interface org.freedesktop.loginl.Seat {
methods:

Terminate();

ActivateSession(in s session_id);

SwitchTo(in u vtnr);

SwitchToNext();

SwitchToPrevious();

properties:
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")

readonly s Id ="..."; Page 15/27

readonly (so) ActiveSession = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly b CanTTY = ..
readonly b CanGraphical = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false™)
readonly a(so) Sessions =[...];
readonly b IdleHint = ...;
readonly t IdleSinceHint = ...;
readonly t IdleSinceHintMonotonic = ...;
h
interface org.freedesktop.DBus.Peer { ... };
interface org.freedesktop.DBus.Introspectable { ... };
interface org.freedesktop.DBus.Properties { ... };
h
Methods
Terminate() and ActivateSession() work similarly to TerminateSeat() and
ActivationSessionOnSeat() on the Manager object.
SwitchTo() switches to the session on the virtual terminal vtnr.
SwitchToNext() and SwitchToPrevious() switch to, respectively, the next
and previous sessions on the seat in the order of virtual terminals. If
there is no active session, they switch to, respectively, the first and
last session on the seat.
Signals
Whenever ActiveSession, Sessions, CanGraphical, CanTTY, or the idle
state changes, PropertyChanged signals are sent out to which clients
can subscribe.
Properties
The Id property encodes the ID of the seat.
ActiveSession encodes the currently active session if there is one. It
is a structure consisting of the session id and the object path.
CanTTY encodes whether the session is suitable for text logins, and
CanGraphical whether it is suitable for graphical sessions.

The Sessions property is an array of all current sessions of this seat, Page 16/27

each encoded in a structure consisting of the ID and the object path.

The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties

encode the idle state, similarly to the ones exposed on the Manager

object, but specific for this seat.

USER OBJECTS
node /org/freedesktop/loginl/user/_1000 {
interface org.freedesktop.loginl.User {
methods:
Terminate();
Kill(in i signal_number);
properties:

@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly u UID = ..,;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly u GID = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Name ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t Timestamp = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly t TimestampMonotonic = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s RuntimePath ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly s Service ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly s Slice ="...";
readonly (so) Display = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly s State ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false")
readonly a(so) Sessions = [...];

readonly b IdleHint = ...; Page 17/27

readonly t IdleSinceHint = ...;
readonly t IdleSinceHintMonotonic = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“false™)
readonly b Linger = ...;

h

interface org.freedesktop.DBus.Peer { ... };

interface org.freedesktop.DBus.Introspectable { ... };

interface org.freedesktop.DBus.Properties { ... };

h

Methods

Terminate() and Kill() work similarly to the TerminateUser() and

KillUser() methods on the manager object.

Signals

Whenever Sessions or the idle state changes, PropertyChanged signals

are sent out to which clients can subscribe.

Properties

The UID and GID properties encode the Unix UID and primary GID of the
user.
The Name property encodes the user name.

Timestamp and TimestampMonotonic encode the login time of the user in

microseconds since the epoch, in the CLOCK_REALTIME and CLOCK_MONOTONIC

clocks, respectively.

RuntimePath encodes the runtime path of the user, i.e.
$XDG_RUNTIME_DIR. For details see the XDG Basedir Specification[3].
Service contains the unit name of the user systemd service of this

user. Each logged in user is assigned a user service that runs a user
systemd instance. This is usually an instance of user@.service.

Slice contains the unit name of the user systemd slice of this user.

Each logged in user gets a private slice.

Display encodes which graphical session should be used as the primary
Ul display for the user. It is a structure encoding the session ID and

the object path of the session to use.

State encodes the user state and is one of "offline", "lingering",

Page 18/27

"online", "active", or "closing”. See sd_uid_get_state(3) for more
information about the states.
Sessions is an array of structures encoding all current sessions of the
user. Each structure consists of the ID and object path.
The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties
encode the idle hint state of the user, similarly to the Manager's
properties, but specific for this user.
The Linger property shows whether lingering is enabled for this user.
SESSION OBJECTS
node /org/freedesktop/loginl/session/1 {
interface org.freedesktop.loginl.Session {
methods:
Terminate();
Activate();
Lock();
Unlock();
SetldleHint(in b idle);
SetLockedHint(in b locked);
Kill(in s who,
in i signal_number);
TakeControl(in b force);
ReleaseControl();
SetType(in s type);
SetDisplay(in s display);
TakeDevice(in u major,
in u minor,
out h fd,
out b inactive);
ReleaseDevice(in u major,
in u minor);
PauseDeviceComplete(in u major,
in u minor);

SetBrightness(in s subsystem, Page 19/27

in s name,
in u brightness);
signals:

PauseDevice(u major,

u minor,

s type);
ResumeDevice(u major,

u minor,

h fd);
Lock();
Unlock();

properties:

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Id ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly (uo) User = ..;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Name ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t Timestamp = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly t TimestampMonotonic = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly u VTNr = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly (so) Seat = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s TTY =",
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Display ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly b Remote = ...;

@org.freedesktop.DBus.Property.EmitsChangedSignal("const")

Page 20/27

readonly s RemoteHost ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s RemoteUser ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Service ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Desktop ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly s Scope ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly u Leader = ...;
@org.freedesktop.DBus.Property.EmitsChangedSignal(“const")
readonly u Audit = ...;
readonly s Type ="...";
@org.freedesktop.DBus.Property.EmitsChangedSignal("const")
readonly s Class ="...";
readonly b Active = ...;
readonly s State ="...";
readonly b IdleHint = ...;
readonly t IdleSinceHint = ...;
readonly t IdleSinceHintMonotonic = ...;
readonly b LockedHint = ...;
¥
interface org.freedesktop.DBus.Peer { ... };
interface org.freedesktop.DBus.Introspectable { ... };
interface org.freedesktop.DBus.Properties { ... };
¥
Methods
Terminate(), Activate(), Lock(), Unlock(), and Kill() work similarly to
the respective calls on the Manager object.
SetldleHint() is called by the session object to update the idle state
of the session whenever it changes.

TakeControl() allows a process to take exclusive managed device

Page 21/27

access-control for that session. Only one D-Bus connection can be a
controller for a given session at any time. If the force argument is

set (root only), an existing controller is kicked out and replaced.
Otherwise, this method fails if there is already a controller. Note

that this method is limited to D-Bus users with the effective UID set

to the user of the session or root.

ReleaseControl() drops control of a given session. Closing the D-Bus
connection implicitly releases control as well. See TakeControl() for
more information. This method also releases all devices for which the
controller requested ownership via TakeDevice().

SetType() allows the type of the session to be changed dynamically. It
can only be called by session's current controller. If TakeControl()

has not been called, this method will fail. In addition, the session

type will be reset to its original value once control is released,

either by calling ReleaseControl() or closing the D-Bus connection.
This should help prevent a session from entering an inconsistent state,
for example if the controller crashes. The only argument type is the
new session type.

SetDisplay() allows the display name of the graphical session to be
changed. This is useful if the display server is started as part of the
session. It can only be called by session's current controller. If
TakeControl() has not been called, this method will fail. The only
argument display is the new display name.

TakeDevice() allows a session controller to get a file descriptor for a
specific device. Pass in the major and minor numbers of the character
device and systemd-logind will return a file descriptor for the device.
Only a limited set of device-types is currently supported (but may be
extended). systemd-logind automatically mutes the file descriptor if
the session is inactive and resumes it once the session is activated
again. This guarantees that a session can only access session devices
if the session is active. Note that this revoke/resume mechanism is
asynchronous and may happen at any given time. This only works on

devices that are attached to the seat of the given session. A process Page 22/27

is not required to have direct access to the device node.
systemd-logind only requires you to be the active session controller
(see TakeControl()). Also note that any device can only be requested
once. As long as you don't release it, further TakeDevice() calls will
fail.
ReleaseDevice() releases a device again (see TakeDevice()). This is
also implicitly done by ReleaseControl() or when closing the D-Bus
connection.
PauseDeviceComplete() allows a session controller to synchronously
pause a device after receiving a PauseDevice("pause") signal. Forced
signals (or after an internal timeout) are automatically completed by
systemd-logind asynchronously.
SetLockedHint() may be used to set the "locked hint" to locked, i.e.
information whether the session is locked. This is intended to be used
by the desktop environment to tell systemd-logind when the session is
locked and unlocked.
SetBrightness() may be used to set the display brightness. This is
intended to be used by the desktop environment and allows unprivileged
programs to access hardware settings in a controlled way. The subsystem
parameter specifies a kernel subsystem, either "backlight" or "leds".
The name parameter specifies a device name under the specified
subsystem. The brightness parameter specifies the brightness. The range
is defined by individual drivers, see
/sys/class/subsystem/name/max_brightness.

Signals
The active session controller exclusively gets PauseDevice and
ResumeDevice events for any device it requested via TakeDevice(). They
notify the controller whenever a device is paused or resumed. A device
is never resumed if its session is inactive. Also note that PauseDevice
signals are sent before the PropertyChanged signal for the Active
state. The inverse is true for ResumeDevice. A device may remain paused
for unknown reasons even though the Session is active.

A PauseDevice signal carries the major and minor numbers and a string Page 23/27

describing the type as arguments. force means the device was already
paused by systemd-logind and the signal is only an asynchronous
notification. pause means systemd-logind grants you a limited amount
of time to pause the device. You must respond to this via
PauseDeviceComplete(). This synchronous pausing mechanism is used for
backwards-compatibility to VTs and systemd-logind is free to not make
use of it. It is also free to send a forced PauseDevice if you don't
respond in a timely manner (or for any other reason). gone means the
device was unplugged from the system and you will no longer get any
notifications about it. There is no need to call ReleaseDevice(). You
may call TakeDevice() again if a new device is assigned the major+minor
combination.
ResumeDevice is sent whenever a session is active and a device is
resumed. It carries the major/minor numbers as arguments and provides a
new open file descriptor. You should switch to the new descriptor and
close the old one. They are not guaranteed to have the same underlying
open file descriptor in the kernel (except for a limited set of device
types).
Whenever Active or the idle state changes, PropertyChanged signals are
sent out to which clients can subscribe.
Lock/Unlock is sent when the session is asked to be
screen-locked/unlocked. A session manager of the session should listen
to this signal and act accordingly. This signal is sent out as a result
of the Lock() and Unlock() methods, respectively.

Properties
Id encodes the session ID.
User encodes the user ID of the user this session belongs to. This is a
structure consisting of the Unix UID and the object path.
Name encodes the user name.
Timestamp and TimestampMonotonic encode the microseconds since the
epoch when the session was created, in CLOCK_REALTIME or
CLOCK_MONOTONIC, respectively.

VTNr encodes the virtual terminal number of the session if there is Page 24/27

any, 0 otherwise.

Seat encodes the seat this session belongs to if there is any. This is
a structure consisting of the ID and the seat object path.

TTY encodes the kernel TTY path of the session if this is a text login.
If not this is an empty string.

Display encodes the X11 display name if this is a graphical login. If
not, this is an empty string.

Remote encodes whether the session is local or remote.
RemoteHost and RemoteUser encode the remote host and user if this is a
remote session, or an empty string otherwise.

Service encodes the PAM service name that registered the session.
Desktop describes the desktop environment running in the session (if
known).

Scope contains the systemd scope unit name of this session.

Leader encodes the PID of the process that registered the session.
Audit encodes the Kernel Audit session ID of the session if auditing is
available.

Type encodes the session type. It's one of "unspecified" (for cron PAM
sessions and suchlike), "tty" (for text logins) or

"x11"/"mir"/"wayland" (for graphical logins).

Class encodes the session class. It's one of "user" (for normal user
sessions), "greeter" (for display manager pseudo-sessions), or
"lock-screen" (for display lock screens).

Active is a boolean that is true if the session is active, i.e.

currently in the foreground. This field is semi-redundant due to State.
State encodes the session state and one of "online", "active", or
"closing". See sd_session_get_state(3) for more information about the
states.

IdleHint, IdleSinceHint, and IdleSinceHintMonotonic encapsulate the
idle hint state of this session, similarly to how the respective
properties on the manager object do it for the whole system.
LockedHint shows the locked hint state of this session, as set by the

SetLockedHint() method described above.

Page 25/27

EXAMPLES
Example 1. Introspect the logind manager on the bus
$ gdbus introspect --system --dest org.freedesktop.loginl \
--object-path /org/freedesktop/loginl
or
$ busctl introspect org.freedesktop.loginl /org/freedesktop/loginl
Example 2. Introspect the default seat on the bus
$ gdbus introspect --system --dest org.freedesktop.loginl \
--object-path /org/freedesktop/loginl/seat/seatO
or
$ busctl introspect org.freedesktop.loginl /org/freedesktop/loginl/seat/seatO
Seat "seat0" is the default seat, so it'll be present unless local
configuration is made to reassign all devices to a different seat. The
list of seats and users can be acquired with loginctl list-sessions.
Example 3. Introspect a single user on the bus
$ gdbus introspect --system --dest org.freedesktop.loginl \
--object-path /org/freedesktop/loginl/user/_1000
or
$ busctl introspect org.freedesktop.loginl /org/freedesktop/loginl/user/_1000
Example 4. Introspect org.freedesktop.loginl.Session on the bus
$ gdbus introspect --system --dest org.freedesktop.loginl \
--object-path /org/freedesktop/loginl/session/45
or
$ busctl introspect org.freedesktop.loginl /org/freedesktop/loginl/session/45
VERSIONING
These D-Bus interfaces follow the usual interface versioning
guidelines[4].
NOTES
1. polkit
https://lwww.freedesktop.org/software/polkit/docs/latest/
2. Inhibitor Locks
https://lwww.freedesktop.org/wiki/Software/systemd/inhibit

3. XDG Basedir Specification

Page 26/27

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
4. the usual interface versioning guidelines
http://Opointer.de/blog/projects/versioning-dbus.html

systemd 252 ORG.FREEDESKTOP.LOGIN1(5)

Page 27/27

