
Rocky Enterprise Linux 9.2 Manual Pages on command 'packet.7'

$ man packet.7

PACKET(7) Linux Programmer's Manual PACKET(7)

NAME

 packet - packet interface on device level

SYNOPSIS

 #include <sys/socket.h>

 #include <linux/if_packet.h>

 #include <net/ethernet.h> /* the L2 protocols */

 packet_socket = socket(AF_PACKET, int socket_type, int protocol);

DESCRIPTION

 Packet sockets are used to receive or send raw packets at the device

 driver (OSI Layer 2) level. They allow the user to implement protocol

 modules in user space on top of the physical layer.

 The socket_type is either SOCK_RAW for raw packets including the link-

 level header or SOCK_DGRAM for cooked packets with the link-level

 header removed. The link-level header information is available in a

 common format in a sockaddr_ll structure. protocol is the IEEE 802.3

 protocol number in network byte order. See the <linux/if_ether.h> in?

 clude file for a list of allowed protocols. When protocol is set to Page 1/11

 htons(ETH_P_ALL), then all protocols are received. All incoming pack?

 ets of that protocol type will be passed to the packet socket before

 they are passed to the protocols implemented in the kernel.

 In order to create a packet socket, a process must have the CAP_NET_RAW

 capability in the user namespace that governs its network namespace.

 SOCK_RAW packets are passed to and from the device driver without any

 changes in the packet data. When receiving a packet, the address is

 still parsed and passed in a standard sockaddr_ll address structure.

 When transmitting a packet, the user-supplied buffer should contain the

 physical-layer header. That packet is then queued unmodified to the

 network driver of the interface defined by the destination address.

 Some device drivers always add other headers. SOCK_RAW is similar to

 but not compatible with the obsolete AF_INET/SOCK_PACKET of Linux 2.0.

 SOCK_DGRAM operates on a slightly higher level. The physical header is

 removed before the packet is passed to the user. Packets sent through

 a SOCK_DGRAM packet socket get a suitable physical-layer header based

 on the information in the sockaddr_ll destination address before they

 are queued.

 By default, all packets of the specified protocol type are passed to a

 packet socket. To get packets only from a specific interface use

 bind(2) specifying an address in a struct sockaddr_ll to bind the

 packet socket to an interface. Fields used for binding are sll_family

 (should be AF_PACKET), sll_protocol, and sll_ifindex.

 The connect(2) operation is not supported on packet sockets.

 When the MSG_TRUNC flag is passed to recvmsg(2), recv(2), or

 recvfrom(2), the real length of the packet on the wire is always re?

 turned, even when it is longer than the buffer.

 Address types

 The sockaddr_ll structure is a device-independent physical-layer ad?

 dress.

 struct sockaddr_ll {

 unsigned short sll_family; /* Always AF_PACKET */

 unsigned short sll_protocol; /* Physical-layer protocol */ Page 2/11

 int sll_ifindex; /* Interface number */

 unsigned short sll_hatype; /* ARP hardware type */

 unsigned char sll_pkttype; /* Packet type */

 unsigned char sll_halen; /* Length of address */

 unsigned char sll_addr[8]; /* Physical-layer address */

 };

 The fields of this structure are as follows:

 * sll_protocol is the standard ethernet protocol type in network byte

 order as defined in the <linux/if_ether.h> include file. It de?

 faults to the socket's protocol.

 * sll_ifindex is the interface index of the interface (see netde?

 vice(7)); 0 matches any interface (only permitted for binding).

 sll_hatype is an ARP type as defined in the <linux/if_arp.h> include

 file.

 * sll_pkttype contains the packet type. Valid types are PACKET_HOST

 for a packet addressed to the local host, PACKET_BROADCAST for a

 physical-layer broadcast packet, PACKET_MULTICAST for a packet sent

 to a physical-layer multicast address, PACKET_OTHERHOST for a packet

 to some other host that has been caught by a device driver in pro?

 miscuous mode, and PACKET_OUTGOING for a packet originating from the

 local host that is looped back to a packet socket. These types make

 sense only for receiving.

 * sll_addr and sll_halen contain the physical-layer (e.g., IEEE 802.3)

 address and its length. The exact interpretation depends on the de?

 vice.

 When you send packets, it is enough to specify sll_family, sll_addr,

 sll_halen, sll_ifindex, and sll_protocol. The other fields should be

 0. sll_hatype and sll_pkttype are set on received packets for your in?

 formation.

 Socket options

 Packet socket options are configured by calling setsockopt(2) with

 level SOL_PACKET.

 PACKET_ADD_MEMBERSHIP Page 3/11

 PACKET_DROP_MEMBERSHIP

 Packet sockets can be used to configure physical-layer multicas?

 ting and promiscuous mode. PACKET_ADD_MEMBERSHIP adds a binding

 and PACKET_DROP_MEMBERSHIP drops it. They both expect a

 packet_mreq structure as argument:

 struct packet_mreq {

 int mr_ifindex; /* interface index */

 unsigned short mr_type; /* action */

 unsigned short mr_alen; /* address length */

 unsigned char mr_address[8]; /* physical-layer address */

 };

 mr_ifindex contains the interface index for the interface whose

 status should be changed. The mr_type field specifies which ac?

 tion to perform. PACKET_MR_PROMISC enables receiving all pack?

 ets on a shared medium (often known as "promiscuous mode"),

 PACKET_MR_MULTICAST binds the socket to the physical-layer mul?

 ticast group specified in mr_address and mr_alen, and

 PACKET_MR_ALLMULTI sets the socket up to receive all multicast

 packets arriving at the interface.

 In addition, the traditional ioctls SIOCSIFFLAGS, SIOCADDMULTI,

 SIOCDELMULTI can be used for the same purpose.

 PACKET_AUXDATA (since Linux 2.6.21)

 If this binary option is enabled, the packet socket passes a

 metadata structure along with each packet in the recvmsg(2) con?

 trol field. The structure can be read with cmsg(3). It is de?

 fined as

 struct tpacket_auxdata {

 __u32 tp_status;

 __u32 tp_len; /* packet length */

 __u32 tp_snaplen; /* captured length */

 __u16 tp_mac;

 __u16 tp_net;

 __u16 tp_vlan_tci; Page 4/11

 __u16 tp_vlan_tpid; /* Since Linux 3.14; earlier, these

 were unused padding bytes */

 };

 PACKET_FANOUT (since Linux 3.1)

 To scale processing across threads, packet sockets can form a

 fanout group. In this mode, each matching packet is enqueued

 onto only one socket in the group. A socket joins a fanout

 group by calling setsockopt(2) with level SOL_PACKET and option

 PACKET_FANOUT. Each network namespace can have up to 65536 in?

 dependent groups. A socket selects a group by encoding the ID

 in the first 16 bits of the integer option value. The first

 packet socket to join a group implicitly creates it. To suc?

 cessfully join an existing group, subsequent packet sockets must

 have the same protocol, device settings, fanout mode and flags

 (see below). Packet sockets can leave a fanout group only by

 closing the socket. The group is deleted when the last socket

 is closed.

 Fanout supports multiple algorithms to spread traffic between

 sockets, as follows:

 * The default mode, PACKET_FANOUT_HASH, sends packets from the

 same flow to the same socket to maintain per-flow ordering.

 For each packet, it chooses a socket by taking the packet

 flow hash modulo the number of sockets in the group, where a

 flow hash is a hash over network-layer address and optional

 transport-layer port fields.

 * The load-balance mode PACKET_FANOUT_LB implements a round-

 robin algorithm.

 * PACKET_FANOUT_CPU selects the socket based on the CPU that

 the packet arrived on.

 * PACKET_FANOUT_ROLLOVER processes all data on a single socket,

 moving to the next when one becomes backlogged.

 * PACKET_FANOUT_RND selects the socket using a pseudo-random

 number generator. Page 5/11

 * PACKET_FANOUT_QM (available since Linux 3.14) selects the

 socket using the recorded queue_mapping of the received skb.

 Fanout modes can take additional options. IP fragmentation

 causes packets from the same flow to have different flow hashes.

 The flag PACKET_FANOUT_FLAG_DEFRAG, if set, causes packets to be

 defragmented before fanout is applied, to preserve order even in

 this case. Fanout mode and options are communicated in the sec?

 ond 16 bits of the integer option value. The flag

 PACKET_FANOUT_FLAG_ROLLOVER enables the roll over mechanism as a

 backup strategy: if the original fanout algorithm selects a

 backlogged socket, the packet rolls over to the next available

 one.

 PACKET_LOSS (with PACKET_TX_RING)

 When a malformed packet is encountered on a transmit ring, the

 default is to reset its tp_status to TP_STATUS_WRONG_FORMAT and

 abort the transmission immediately. The malformed packet blocks

 itself and subsequently enqueued packets from being sent. The

 format error must be fixed, the associated tp_status reset to

 TP_STATUS_SEND_REQUEST, and the transmission process restarted

 via send(2). However, if PACKET_LOSS is set, any malformed

 packet will be skipped, its tp_status reset to TP_STATUS_AVAIL?

 ABLE, and the transmission process continued.

 PACKET_RESERVE (with PACKET_RX_RING)

 By default, a packet receive ring writes packets immediately

 following the metadata structure and alignment padding. This

 integer option reserves additional headroom.

 PACKET_RX_RING

 Create a memory-mapped ring buffer for asynchronous packet re?

 ception. The packet socket reserves a contiguous region of ap?

 plication address space, lays it out into an array of packet

 slots and copies packets (up to tp_snaplen) into subsequent

 slots. Each packet is preceded by a metadata structure similar

 to tpacket_auxdata. The protocol fields encode the offset to Page 6/11

 the data from the start of the metadata header. tp_net stores

 the offset to the network layer. If the packet socket is of

 type SOCK_DGRAM, then tp_mac is the same. If it is of type

 SOCK_RAW, then that field stores the offset to the link-layer

 frame. Packet socket and application communicate the head and

 tail of the ring through the tp_status field. The packet socket

 owns all slots with tp_status equal to TP_STATUS_KERNEL. After

 filling a slot, it changes the status of the slot to transfer

 ownership to the application. During normal operation, the new

 tp_status value has at least the TP_STATUS_USER bit set to sig?

 nal that a received packet has been stored. When the applica?

 tion has finished processing a packet, it transfers ownership of

 the slot back to the socket by setting tp_status equal to

 TP_STATUS_KERNEL.

 Packet sockets implement multiple variants of the packet ring.

 The implementation details are described in Documentation/net?

 working/packet_mmap.rst in the Linux kernel source tree.

 PACKET_STATISTICS

 Retrieve packet socket statistics in the form of a structure

 struct tpacket_stats {

 unsigned int tp_packets; /* Total packet count */

 unsigned int tp_drops; /* Dropped packet count */

 };

 Receiving statistics resets the internal counters. The statis?

 tics structure differs when using a ring of variant TPACKET_V3.

 PACKET_TIMESTAMP (with PACKET_RX_RING; since Linux 2.6.36)

 The packet receive ring always stores a timestamp in the meta?

 data header. By default, this is a software generated timestamp

 generated when the packet is copied into the ring. This integer

 option selects the type of timestamp. Besides the default, it

 support the two hardware formats described in Documentation/net?

 working/timestamping.rst in the Linux kernel source tree.

 PACKET_TX_RING (since Linux 2.6.31) Page 7/11

 Create a memory-mapped ring buffer for packet transmission.

 This option is similar to PACKET_RX_RING and takes the same ar?

 guments. The application writes packets into slots with tp_sta?

 tus equal to TP_STATUS_AVAILABLE and schedules them for trans?

 mission by changing tp_status to TP_STATUS_SEND_REQUEST. When

 packets are ready to be transmitted, the application calls

 send(2) or a variant thereof. The buf and len fields of this

 call are ignored. If an address is passed using sendto(2) or

 sendmsg(2), then that overrides the socket default. On success?

 ful transmission, the socket resets tp_status to TP_STA?

 TUS_AVAILABLE. It immediately aborts the transmission on error

 unless PACKET_LOSS is set.

 PACKET_VERSION (with PACKET_RX_RING; since Linux 2.6.27)

 By default, PACKET_RX_RING creates a packet receive ring of

 variant TPACKET_V1. To create another variant, configure the

 desired variant by setting this integer option before creating

 the ring.

 PACKET_QDISC_BYPASS (since Linux 3.14)

 By default, packets sent through packet sockets pass through the

 kernel's qdisc (traffic control) layer, which is fine for the

 vast majority of use cases. For traffic generator appliances

 using packet sockets that intend to brute-force flood the net?

 work?for example, to test devices under load in a similar fash?

 ion to pktgen?this layer can be bypassed by setting this integer

 option to 1. A side effect is that packet buffering in the

 qdisc layer is avoided, which will lead to increased drops when

 network device transmit queues are busy; therefore, use at your

 own risk.

 Ioctls

 SIOCGSTAMP can be used to receive the timestamp of the last received

 packet. Argument is a struct timeval variable.

 In addition, all standard ioctls defined in netdevice(7) and socket(7)

 are valid on packet sockets. Page 8/11

 Error handling

 Packet sockets do no error handling other than errors occurred while

 passing the packet to the device driver. They don't have the concept

 of a pending error.

ERRORS

 EADDRNOTAVAIL

 Unknown multicast group address passed.

 EFAULT User passed invalid memory address.

 EINVAL Invalid argument.

 EMSGSIZE

 Packet is bigger than interface MTU.

 ENETDOWN

 Interface is not up.

 ENOBUFS

 Not enough memory to allocate the packet.

 ENODEV Unknown device name or interface index specified in interface

 address.

 ENOENT No packet received.

 ENOTCONN

 No interface address passed.

 ENXIO Interface address contained an invalid interface index.

 EPERM User has insufficient privileges to carry out this operation.

 In addition, other errors may be generated by the low-level driver.

VERSIONS

 AF_PACKET is a new feature in Linux 2.2. Earlier Linux versions sup?

 ported only SOCK_PACKET.

NOTES

 For portable programs it is suggested to use AF_PACKET via pcap(3); al?

 though this covers only a subset of the AF_PACKET features.

 The SOCK_DGRAM packet sockets make no attempt to create or parse the

 IEEE 802.2 LLC header for a IEEE 802.3 frame. When ETH_P_802_3 is

 specified as protocol for sending the kernel creates the 802.3 frame

 and fills out the length field; the user has to supply the LLC header Page 9/11

 to get a fully conforming packet. Incoming 802.3 packets are not mul?

 tiplexed on the DSAP/SSAP protocol fields; instead they are supplied to

 the user as protocol ETH_P_802_2 with the LLC header prefixed. It is

 thus not possible to bind to ETH_P_802_3; bind to ETH_P_802_2 instead

 and do the protocol multiplex yourself. The default for sending is the

 standard Ethernet DIX encapsulation with the protocol filled in.

 Packet sockets are not subject to the input or output firewall chains.

 Compatibility

 In Linux 2.0, the only way to get a packet socket was with the call:

 socket(AF_INET, SOCK_PACKET, protocol)

 This is still supported, but deprecated and strongly discouraged. The

 main difference between the two methods is that SOCK_PACKET uses the

 old struct sockaddr_pkt to specify an interface, which doesn't provide

 physical-layer independence.

 struct sockaddr_pkt {

 unsigned short spkt_family;

 unsigned char spkt_device[14];

 unsigned short spkt_protocol;

 };

 spkt_family contains the device type, spkt_protocol is the IEEE 802.3

 protocol type as defined in <sys/if_ether.h> and spkt_device is the de?

 vice name as a null-terminated string, for example, eth0.

 This structure is obsolete and should not be used in new code.

BUGS

 The IEEE 802.2/803.3 LLC handling could be considered as a bug.

 Socket filters are not documented.

 The MSG_TRUNC recvmsg(2) extension is an ugly hack and should be re?

 placed by a control message. There is currently no way to get the

 original destination address of packets via SOCK_DGRAM.

SEE ALSO

 socket(2), pcap(3), capabilities(7), ip(7), raw(7), socket(7)

 RFC 894 for the standard IP Ethernet encapsulation. RFC 1700 for the

 IEEE 802.3 IP encapsulation. Page 10/11

 The <linux/if_ether.h> include file for physical-layer protocols.

 The Linux kernel source tree. Documentation/networking/filter.rst de?

 scribes how to apply Berkeley Packet Filters to packet sockets.

 tools/testing/selftests/net/psock_tpacket.c contains example source

 code for all available versions of PACKET_RX_RING and PACKET_TX_RING.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 PACKET(7)

Page 11/11

