
Rocky Enterprise Linux 9.2 Manual Pages on command 'pcre2unicode.3'

$ man pcre2unicode.3

PCRE2UNICODE(3) Library Functions Manual PCRE2UNICODE(3)

NAME

 PCRE - Perl-compatible regular expressions (revised API)

UNICODE AND UTF SUPPORT

 PCRE2 is normally built with Unicode support, though if you do not need

 it, you can build it without, in which case the library will be

 smaller. With Unicode support, PCRE2 has knowledge of Unicode character

 properties and can process strings of text in UTF-8, UTF-16, and UTF-32

 format (depending on the code unit width), but this is not the default.

 Unless specifically requested, PCRE2 treats each code unit in a string

 as one character.

 There are two ways of telling PCRE2 to switch to UTF mode, where char?

 acters may consist of more than one code unit and the range of values

 is constrained. The program can call pcre2_compile() with the PCRE2_UTF

 option, or the pattern may start with the sequence (*UTF). However,

 the latter facility can be locked out by the PCRE2_NEVER_UTF option.

 That is, the programmer can prevent the supplier of the pattern from

 switching to UTF mode. Page 1/11

 Note that the PCRE2_MATCH_INVALID_UTF option (see below) forces

 PCRE2_UTF to be set.

 In UTF mode, both the pattern and any subject strings that are matched

 against it are treated as UTF strings instead of strings of individual

 one-code-unit characters. There are also some other changes to the way

 characters are handled, as documented below.

UNICODE PROPERTY SUPPORT

 When PCRE2 is built with Unicode support, the escape sequences \p{..},

 \P{..}, and \X can be used. This is not dependent on the PCRE2_UTF set?

 ting. The Unicode properties that can be tested are a subset of those

 that Perl supports. Currently they are limited to the general category

 properties such as Lu for an upper case letter or Nd for a decimal num?

 ber, the Unicode script names such as Arabic or Han, Bidi_Class,

 Bidi_Control, and the derived properties Any and LC (synonym L&). Full

 lists are given in the pcre2pattern and pcre2syntax documentation. In

 general, only the short names for properties are supported. For exam?

 ple, \p{L} matches a letter. Its longer synonym, \p{Letter}, is not

 supported. Furthermore, in Perl, many properties may optionally be pre?

 fixed by "Is", for compatibility with Perl 5.6. PCRE2 does not support

 this.

WIDE CHARACTERS AND UTF MODES

 Code points less than 256 can be specified in patterns by either braced

 or unbraced hexadecimal escape sequences (for example, \x{b3} or \xb3).

 Larger values have to use braced sequences. Unbraced octal code points

 up to \777 are also recognized; larger ones can be coded using \o{...}.

 The escape sequence \N{U+<hex digits>} is recognized as another way of

 specifying a Unicode character by code point in a UTF mode. It is not

 allowed in non-UTF mode.

 In UTF mode, repeat quantifiers apply to complete UTF characters, not

 to individual code units.

 In UTF mode, the dot metacharacter matches one UTF character instead of

 a single code unit.

 In UTF mode, capture group names are not restricted to ASCII, and may Page 2/11

 contain any Unicode letters and decimal digits, as well as underscore.

 The escape sequence \C can be used to match a single code unit in UTF

 mode, but its use can lead to some strange effects because it breaks up

 multi-unit characters (see the description of \C in the pcre2pattern

 documentation). For this reason, there is a build-time option that dis?

 ables support for \C completely. There is also a less draconian com?

 pile-time option for locking out the use of \C when a pattern is com?

 piled.

 The use of \C is not supported by the alternative matching function

 pcre2_dfa_match() when in UTF-8 or UTF-16 mode, that is, when a charac?

 ter may consist of more than one code unit. The use of \C in these

 modes provokes a match-time error. Also, the JIT optimization does not

 support \C in these modes. If JIT optimization is requested for a UTF-8

 or UTF-16 pattern that contains \C, it will not succeed, and so when

 pcre2_match() is called, the matching will be carried out by the inter?

 pretive function.

 The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly test

 characters of any code value, but, by default, the characters that

 PCRE2 recognizes as digits, spaces, or word characters remain the same

 set as in non-UTF mode, all with code points less than 256. This re?

 mains true even when PCRE2 is built to include Unicode support, because

 to do otherwise would slow down matching in many common cases. Note

 that this also applies to \b and \B, because they are defined in terms

 of \w and \W. If you want to test for a wider sense of, say, "digit",

 you can use explicit Unicode property tests such as \p{Nd}. Alterna?

 tively, if you set the PCRE2_UCP option, the way that the character es?

 capes work is changed so that Unicode properties are used to determine

 which characters match. There are more details in the section on

 generic character types in the pcre2pattern documentation.

 Similarly, characters that match the POSIX named character classes are

 all low-valued characters, unless the PCRE2_UCP option is set.

 However, the special horizontal and vertical white space matching es?

 capes (\h, \H, \v, and \V) do match all the appropriate Unicode charac? Page 3/11

 ters, whether or not PCRE2_UCP is set.

UNICODE CASE-EQUIVALENCE

 If either PCRE2_UTF or PCRE2_UCP is set, upper/lower case processing

 makes use of Unicode properties except for characters whose code points

 are less than 128 and that have at most two case-equivalent values. For

 these, a direct table lookup is used for speed. A few Unicode charac?

 ters such as Greek sigma have more than two code points that are case-

 equivalent, and these are treated specially. Setting PCRE2_UCP without

 PCRE2_UTF allows Unicode-style case processing for non-UTF character

 encodings such as UCS-2.

SCRIPT RUNS

 The pattern constructs (*script_run:...) and (*atomic_script_run:...),

 with synonyms (*sr:...) and (*asr:...), verify that the string matched

 within the parentheses is a script run. In concept, a script run is a

 sequence of characters that are all from the same Unicode script. How?

 ever, because some scripts are commonly used together, and because some

 diacritical and other marks are used with multiple scripts, it is not

 that simple.

 Every Unicode character has a Script property, mostly with a value cor?

 responding to the name of a script, such as Latin, Greek, or Cyrillic.

 There are also three special values:

 "Unknown" is used for code points that have not been assigned, and also

 for the surrogate code points. In the PCRE2 32-bit library, characters

 whose code points are greater than the Unicode maximum (U+10FFFF),

 which are accessible only in non-UTF mode, are assigned the Unknown

 script.

 "Common" is used for characters that are used with many scripts. These

 include punctuation, emoji, mathematical, musical, and currency sym?

 bols, and the ASCII digits 0 to 9.

 "Inherited" is used for characters such as diacritical marks that mod?

 ify a previous character. These are considered to take on the script of

 the character that they modify.

 Some Inherited characters are used with many scripts, but many of them Page 4/11

 are only normally used with a small number of scripts. For example,

 U+102E0 (Coptic Epact thousands mark) is used only with Arabic and Cop?

 tic. In order to make it possible to check this, a Unicode property

 called Script Extension exists. Its value is a list of scripts that ap?

 ply to the character. For the majority of characters, the list contains

 just one script, the same one as the Script property. However, for

 characters such as U+102E0 more than one Script is listed. There are

 also some Common characters that have a single, non-Common script in

 their Script Extension list.

 The next section describes the basic rules for deciding whether a given

 string of characters is a script run. Note, however, that there are

 some special cases involving the Chinese Han script, and an additional

 constraint for decimal digits. These are covered in subsequent sec?

 tions.

 Basic script run rules

 A string that is less than two characters long is a script run. This is

 the only case in which an Unknown character can be part of a script

 run. Longer strings are checked using only the Script Extensions prop?

 erty, not the basic Script property.

 If a character's Script Extension property is the single value "Inher?

 ited", it is always accepted as part of a script run. This is also true

 for the property "Common", subject to the checking of decimal digits

 described below. All the remaining characters in a script run must have

 at least one script in common in their Script Extension lists. In set-

 theoretic terminology, the intersection of all the sets of scripts must

 not be empty.

 A simple example is an Internet name such as "google.com". The letters

 are all in the Latin script, and the dot is Common, so this string is a

 script run. However, the Cyrillic letter "o" looks exactly the same as

 the Latin "o"; a string that looks the same, but with Cyrillic "o"s is

 not a script run.

 More interesting examples involve characters with more than one script

 in their Script Extension. Consider the following characters: Page 5/11

 U+060C Arabic comma

 U+06D4 Arabic full stop

 The first has the Script Extension list Arabic, Hanifi Rohingya, Syr?

 iac, and Thaana; the second has just Arabic and Hanifi Rohingya. Both

 of them could appear in script runs of either Arabic or Hanifi Ro?

 hingya. The first could also appear in Syriac or Thaana script runs,

 but the second could not.

 The Chinese Han script

 The Chinese Han script is commonly used in conjunction with other

 scripts for writing certain languages. Japanese uses the Hiragana and

 Katakana scripts together with Han; Korean uses Hangul and Han; Tai?

 wanese Mandarin uses Bopomofo and Han. These three combinations are

 treated as special cases when checking script runs and are, in effect,

 "virtual scripts". Thus, a script run may contain a mixture of Hira?

 gana, Katakana, and Han, or a mixture of Hangul and Han, or a mixture

 of Bopomofo and Han, but not, for example, a mixture of Hangul and

 Bopomofo and Han. PCRE2 (like Perl) follows Unicode's Technical Stan?

 dard 39 ("Unicode Security Mechanisms", http://unicode.org/re?

 ports/tr39/) in allowing such mixtures.

 Decimal digits

 Unicode contains many sets of 10 decimal digits in different scripts,

 and some scripts (including the Common script) contain more than one

 set. Some of these decimal digits them are visually indistinguishable

 from the common ASCII digits. In addition to the script checking de?

 scribed above, if a script run contains any decimal digits, they must

 all come from the same set of 10 adjacent characters.

VALIDITY OF UTF STRINGS

 When the PCRE2_UTF option is set, the strings passed as patterns and

 subjects are (by default) checked for validity on entry to the relevant

 functions. If an invalid UTF string is passed, a negative error code is

 returned. The code unit offset to the offending character can be ex?

 tracted from the match data block by calling pcre2_get_startchar(),

 which is used for this purpose after a UTF error. Page 6/11

 In some situations, you may already know that your strings are valid,

 and therefore want to skip these checks in order to improve perfor?

 mance, for example in the case of a long subject string that is being

 scanned repeatedly. If you set the PCRE2_NO_UTF_CHECK option at com?

 pile time or at match time, PCRE2 assumes that the pattern or subject

 it is given (respectively) contains only valid UTF code unit sequences.

 If you pass an invalid UTF string when PCRE2_NO_UTF_CHECK is set, the

 result is undefined and your program may crash or loop indefinitely or

 give incorrect results. There is, however, one mode of matching that

 can handle invalid UTF subject strings. This is enabled by passing

 PCRE2_MATCH_INVALID_UTF to pcre2_compile() and is discussed below in

 the next section. The rest of this section covers the case when

 PCRE2_MATCH_INVALID_UTF is not set.

 Passing PCRE2_NO_UTF_CHECK to pcre2_compile() just disables the UTF

 check for the pattern; it does not also apply to subject strings. If

 you want to disable the check for a subject string you must pass this

 same option to pcre2_match() or pcre2_dfa_match().

 UTF-16 and UTF-32 strings can indicate their endianness by special code

 knows as a byte-order mark (BOM). The PCRE2 functions do not handle

 this, expecting strings to be in host byte order.

 Unless PCRE2_NO_UTF_CHECK is set, a UTF string is checked before any

 other processing takes place. In the case of pcre2_match() and

 pcre2_dfa_match() calls with a non-zero starting offset, the check is

 applied only to that part of the subject that could be inspected during

 matching, and there is a check that the starting offset points to the

 first code unit of a character or to the end of the subject. If there

 are no lookbehind assertions in the pattern, the check starts at the

 starting offset. Otherwise, it starts at the length of the longest

 lookbehind before the starting offset, or at the start of the subject

 if there are not that many characters before the starting offset. Note

 that the sequences \b and \B are one-character lookbehinds.

 In addition to checking the format of the string, there is a check to

 ensure that all code points lie in the range U+0 to U+10FFFF, excluding Page 7/11

 the surrogate area. The so-called "non-character" code points are not

 excluded because Unicode corrigendum #9 makes it clear that they should

 not be.

 Characters in the "Surrogate Area" of Unicode are reserved for use by

 UTF-16, where they are used in pairs to encode code points with values

 greater than 0xFFFF. The code points that are encoded by UTF-16 pairs

 are available independently in the UTF-8 and UTF-32 encodings. (In

 other words, the whole surrogate thing is a fudge for UTF-16 which un?

 fortunately messes up UTF-8 and UTF-32.)

 Setting PCRE2_NO_UTF_CHECK at compile time does not disable the error

 that is given if an escape sequence for an invalid Unicode code point

 is encountered in the pattern. If you want to allow escape sequences

 such as \x{d800} (a surrogate code point) you can set the PCRE2_EX?

 TRA_ALLOW_SURROGATE_ESCAPES extra option. However, this is possible

 only in UTF-8 and UTF-32 modes, because these values are not repre?

 sentable in UTF-16.

 Errors in UTF-8 strings

 The following negative error codes are given for invalid UTF-8 strings:

 PCRE2_ERROR_UTF8_ERR1

 PCRE2_ERROR_UTF8_ERR2

 PCRE2_ERROR_UTF8_ERR3

 PCRE2_ERROR_UTF8_ERR4

 PCRE2_ERROR_UTF8_ERR5

 The string ends with a truncated UTF-8 character; the code specifies

 how many bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8

 characters to be no longer than 4 bytes, the encoding scheme (origi?

 nally defined by RFC 2279) allows for up to 6 bytes, and this is

 checked first; hence the possibility of 4 or 5 missing bytes.

 PCRE2_ERROR_UTF8_ERR6

 PCRE2_ERROR_UTF8_ERR7

 PCRE2_ERROR_UTF8_ERR8

 PCRE2_ERROR_UTF8_ERR9

 PCRE2_ERROR_UTF8_ERR10 Page 8/11

 The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of

 the character do not have the binary value 0b10 (that is, either the

 most significant bit is 0, or the next bit is 1).

 PCRE2_ERROR_UTF8_ERR11

 PCRE2_ERROR_UTF8_ERR12

 A character that is valid by the RFC 2279 rules is either 5 or 6 bytes

 long; these code points are excluded by RFC 3629.

 PCRE2_ERROR_UTF8_ERR13

 A 4-byte character has a value greater than 0x10ffff; these code points

 are excluded by RFC 3629.

 PCRE2_ERROR_UTF8_ERR14

 A 3-byte character has a value in the range 0xd800 to 0xdfff; this

 range of code points are reserved by RFC 3629 for use with UTF-16, and

 so are excluded from UTF-8.

 PCRE2_ERROR_UTF8_ERR15

 PCRE2_ERROR_UTF8_ERR16

 PCRE2_ERROR_UTF8_ERR17

 PCRE2_ERROR_UTF8_ERR18

 PCRE2_ERROR_UTF8_ERR19

 A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes

 for a value that can be represented by fewer bytes, which is invalid.

 For example, the two bytes 0xc0, 0xae give the value 0x2e, whose cor?

 rect coding uses just one byte.

 PCRE2_ERROR_UTF8_ERR20

 The two most significant bits of the first byte of a character have the

 binary value 0b10 (that is, the most significant bit is 1 and the sec?

 ond is 0). Such a byte can only validly occur as the second or subse?

 quent byte of a multi-byte character.

 PCRE2_ERROR_UTF8_ERR21

 The first byte of a character has the value 0xfe or 0xff. These values

 can never occur in a valid UTF-8 string.

 Errors in UTF-16 strings

 The following negative error codes are given for invalid UTF-16 Page 9/11

 strings:

 PCRE2_ERROR_UTF16_ERR1 Missing low surrogate at end of string

 PCRE2_ERROR_UTF16_ERR2 Invalid low surrogate follows high surrogate

 PCRE2_ERROR_UTF16_ERR3 Isolated low surrogate

 Errors in UTF-32 strings

 The following negative error codes are given for invalid UTF-32

 strings:

 PCRE2_ERROR_UTF32_ERR1 Surrogate character (0xd800 to 0xdfff)

 PCRE2_ERROR_UTF32_ERR2 Code point is greater than 0x10ffff

MATCHING IN INVALID UTF STRINGS

 You can run pattern matches on subject strings that may contain invalid

 UTF sequences if you call pcre2_compile() with the PCRE2_MATCH_IN?

 VALID_UTF option. This is supported by pcre2_match(), including JIT

 matching, but not by pcre2_dfa_match(). When PCRE2_MATCH_INVALID_UTF is

 set, it forces PCRE2_UTF to be set as well. Note, however, that the

 pattern itself must be a valid UTF string.

 Setting PCRE2_MATCH_INVALID_UTF does not affect what pcre2_compile()

 generates, but if pcre2_jit_compile() is subsequently called, it does

 generate different code. If JIT is not used, the option affects the be?

 haviour of the interpretive code in pcre2_match(). When PCRE2_MATCH_IN?

 VALID_UTF is set at compile time, PCRE2_NO_UTF_CHECK is ignored at

 match time.

 In this mode, an invalid code unit sequence in the subject never

 matches any pattern item. It does not match dot, it does not match

 \p{Any}, it does not even match negative items such as [^X]. A lookbe?

 hind assertion fails if it encounters an invalid sequence while moving

 the current point backwards. In other words, an invalid UTF code unit

 sequence acts as a barrier which no match can cross.

 You can also think of this as the subject being split up into fragments

 of valid UTF, delimited internally by invalid code unit sequences. The

 pattern is matched fragment by fragment. The result of a successful

 match, however, is given as code unit offsets in the entire subject

 string in the usual way. There are a few points to consider: Page 10/11

 The internal boundaries are not interpreted as the beginnings or ends

 of lines and so do not match circumflex or dollar characters in the

 pattern.

 If pcre2_match() is called with an offset that points to an invalid

 UTF-sequence, that sequence is skipped, and the match starts at the

 next valid UTF character, or the end of the subject.

 At internal fragment boundaries, \b and \B behave in the same way as at

 the beginning and end of the subject. For example, a sequence such as

 \bWORD\b would match an instance of WORD that is surrounded by invalid

 UTF code units.

 Using PCRE2_MATCH_INVALID_UTF, an application can run matches on arbi?

 trary data, knowing that any matched strings that are returned are

 valid UTF. This can be useful when searching for UTF text in executable

 or other binary files.

AUTHOR

 Philip Hazel

 Retired from University Computing Service

 Cambridge, England.

REVISION

 Last updated: 22 December 2021

 Copyright (c) 1997-2021 University of Cambridge.

PCRE2 10.40 22 December 2021 PCRE2UNICODE(3)

Page 11/11

