
Rocky Enterprise Linux 9.2 Manual Pages on command 'prctl.2'

$ man prctl.2

PRCTL(2) Linux Programmer's Manual PRCTL(2)

NAME

 prctl - operations on a process or thread

SYNOPSIS

 #include <sys/prctl.h>

 int prctl(int option, unsigned long arg2, unsigned long arg3,

 unsigned long arg4, unsigned long arg5);

DESCRIPTION

 prctl() manipulates various aspects of the behavior of the calling

 thread or process.

 Note that careless use of some prctl() operations can confuse the user-

 space run-time environment, so these operations should be used with

 care.

 prctl() is called with a first argument describing what to do (with

 values defined in <linux/prctl.h>), and further arguments with a sig?

 nificance depending on the first one. The first argument can be:

 PR_CAP_AMBIENT (since Linux 4.3)

 Reads or changes the ambient capability set of the calling Page 1/31

 thread, according to the value of arg2, which must be one of the

 following:

 PR_CAP_AMBIENT_RAISE

 The capability specified in arg3 is added to the ambient

 set. The specified capability must already be present in

 both the permitted and the inheritable sets of the

 process. This operation is not permitted if the

 SECBIT_NO_CAP_AMBIENT_RAISE securebit is set.

 PR_CAP_AMBIENT_LOWER

 The capability specified in arg3 is removed from the am?

 bient set.

 PR_CAP_AMBIENT_IS_SET

 The prctl() call returns 1 if the capability in arg3 is

 in the ambient set and 0 if it is not.

 PR_CAP_AMBIENT_CLEAR_ALL

 All capabilities will be removed from the ambient set.

 This operation requires setting arg3 to zero.

 In all of the above operations, arg4 and arg5 must be specified

 as 0.

 Higher-level interfaces layered on top of the above operations

 are provided in the libcap(3) library in the form of cap_get_am?

 bient(3), cap_set_ambient(3), and cap_reset_ambient(3).

 PR_CAPBSET_READ (since Linux 2.6.25)

 Return (as the function result) 1 if the capability specified in

 arg2 is in the calling thread's capability bounding set, or 0 if

 it is not. (The capability constants are defined in <linux/ca?

 pability.h>.) The capability bounding set dictates whether the

 process can receive the capability through a file's permitted

 capability set on a subsequent call to execve(2).

 If the capability specified in arg2 is not valid, then the call

 fails with the error EINVAL.

 A higher-level interface layered on top of this operation is

 provided in the libcap(3) library in the form of Page 2/31

 cap_get_bound(3).

 PR_CAPBSET_DROP (since Linux 2.6.25)

 If the calling thread has the CAP_SETPCAP capability within its

 user namespace, then drop the capability specified by arg2 from

 the calling thread's capability bounding set. Any children of

 the calling thread will inherit the newly reduced bounding set.

 The call fails with the error: EPERM if the calling thread does

 not have the CAP_SETPCAP; EINVAL if arg2 does not represent a

 valid capability; or EINVAL if file capabilities are not enabled

 in the kernel, in which case bounding sets are not supported.

 A higher-level interface layered on top of this operation is

 provided in the libcap(3) library in the form of

 cap_drop_bound(3).

 PR_SET_CHILD_SUBREAPER (since Linux 3.4)

 If arg2 is nonzero, set the "child subreaper" attribute of the

 calling process; if arg2 is zero, unset the attribute.

 A subreaper fulfills the role of init(1) for its descendant pro?

 cesses. When a process becomes orphaned (i.e., its immediate

 parent terminates), then that process will be reparented to the

 nearest still living ancestor subreaper. Subsequently, calls to

 getppid(2) in the orphaned process will now return the PID of

 the subreaper process, and when the orphan terminates, it is the

 subreaper process that will receive a SIGCHLD signal and will be

 able to wait(2) on the process to discover its termination sta?

 tus.

 The setting of the "child subreaper" attribute is not inherited

 by children created by fork(2) and clone(2). The setting is

 preserved across execve(2).

 Establishing a subreaper process is useful in session management

 frameworks where a hierarchical group of processes is managed by

 a subreaper process that needs to be informed when one of the

 processes?for example, a double-forked daemon?terminates (per?

 haps so that it can restart that process). Some init(1) frame? Page 3/31

 works (e.g., systemd(1)) employ a subreaper process for similar

 reasons.

 PR_GET_CHILD_SUBREAPER (since Linux 3.4)

 Return the "child subreaper" setting of the caller, in the loca?

 tion pointed to by (int *) arg2.

 PR_SET_DUMPABLE (since Linux 2.3.20)

 Set the state of the "dumpable" attribute, which determines

 whether core dumps are produced for the calling process upon de?

 livery of a signal whose default behavior is to produce a core

 dump.

 In kernels up to and including 2.6.12, arg2 must be either 0

 (SUID_DUMP_DISABLE, process is not dumpable) or 1

 (SUID_DUMP_USER, process is dumpable). Between kernels 2.6.13

 and 2.6.17, the value 2 was also permitted, which caused any bi?

 nary which normally would not be dumped to be dumped readable by

 root only; for security reasons, this feature has been removed.

 (See also the description of /proc/sys/fs/suid_dumpable in

 proc(5).)

 Normally, the "dumpable" attribute is set to 1. However, it is

 reset to the current value contained in the file /proc/sys/fs/

 suid_dumpable (which by default has the value 0), in the follow?

 ing circumstances:

 * The process's effective user or group ID is changed.

 * The process's filesystem user or group ID is changed (see

 credentials(7)).

 * The process executes (execve(2)) a set-user-ID or set-group-

 ID program, resulting in a change of either the effective

 user ID or the effective group ID.

 * The process executes (execve(2)) a program that has file ca?

 pabilities (see capabilities(7)), but only if the permitted

 capabilities gained exceed those already permitted for the

 process.

 Processes that are not dumpable can not be attached via Page 4/31

 ptrace(2) PTRACE_ATTACH; see ptrace(2) for further details.

 If a process is not dumpable, the ownership of files in the

 process's /proc/[pid] directory is affected as described in

 proc(5).

 PR_GET_DUMPABLE (since Linux 2.3.20)

 Return (as the function result) the current state of the calling

 process's dumpable attribute.

 PR_SET_ENDIAN (since Linux 2.6.18, PowerPC only)

 Set the endian-ness of the calling process to the value given in

 arg2, which should be one of the following: PR_ENDIAN_BIG,

 PR_ENDIAN_LITTLE, or PR_ENDIAN_PPC_LITTLE (PowerPC pseudo little

 endian).

 PR_GET_ENDIAN (since Linux 2.6.18, PowerPC only)

 Return the endian-ness of the calling process, in the location

 pointed to by (int *) arg2.

 PR_SET_FP_MODE (since Linux 4.0, only on MIPS)

 On the MIPS architecture, user-space code can be built using an

 ABI which permits linking with code that has more restrictive

 floating-point (FP) requirements. For example, user-space code

 may be built to target the O32 FPXX ABI and linked with code

 built for either one of the more restrictive FP32 or FP64 ABIs.

 When more restrictive code is linked in, the overall requirement

 for the process is to use the more restrictive floating-point

 mode.

 Because the kernel has no means of knowing in advance which mode

 the process should be executed in, and because these restric?

 tions can change over the lifetime of the process, the

 PR_SET_FP_MODE operation is provided to allow control of the

 floating-point mode from user space.

 The (unsigned int) arg2 argument is a bit mask describing the

 floating-point mode used:

 PR_FP_MODE_FR

 When this bit is unset (so called FR=0 or FR0 mode), the Page 5/31

 32 floating-point registers are 32 bits wide, and 64-bit

 registers are represented as a pair of registers (even-

 and odd- numbered, with the even-numbered register con?

 taining the lower 32 bits, and the odd-numbered register

 containing the higher 32 bits).

 When this bit is set (on supported hardware), the 32

 floating-point registers are 64 bits wide (so called FR=1

 or FR1 mode). Note that modern MIPS implementations

 (MIPS R6 and newer) support FR=1 mode only.

 Applications that use the O32 FP32 ABI can operate only

 when this bit is unset (FR=0; or they can be used with

 FRE enabled, see below). Applications that use the O32

 FP64 ABI (and the O32 FP64A ABI, which exists to provide

 the ability to operate with existing FP32 code; see be?

 low) can operate only when this bit is set (FR=1). Ap?

 plications that use the O32 FPXX ABI can operate with ei?

 ther FR=0 or FR=1.

 PR_FP_MODE_FRE

 Enable emulation of 32-bit floating-point mode. When

 this mode is enabled, it emulates 32-bit floating-point

 operations by raising a reserved-instruction exception on

 every instruction that uses 32-bit formats and the kernel

 then handles the instruction in software. (The problem

 lies in the discrepancy of handling odd-numbered regis?

 ters which are the high 32 bits of 64-bit registers with

 even numbers in FR=0 mode and the lower 32-bit parts of

 odd-numbered 64-bit registers in FR=1 mode.) Enabling

 this bit is necessary when code with the O32 FP32 ABI

 should operate with code with compatible the O32 FPXX or

 O32 FP64A ABIs (which require FR=1 FPU mode) or when it

 is executed on newer hardware (MIPS R6 onwards) which

 lacks FR=0 mode support when a binary with the FP32 ABI

 is used. Page 6/31

 Note that this mode makes sense only when the FPU is in

 64-bit mode (FR=1).

 Note that the use of emulation inherently has a signifi?

 cant performance hit and should be avoided if possible.

 In the N32/N64 ABI, 64-bit floating-point mode is always used,

 so FPU emulation is not required and the FPU always operates in

 FR=1 mode.

 This option is mainly intended for use by the dynamic linker

 (ld.so(8)).

 The arguments arg3, arg4, and arg5 are ignored.

 PR_GET_FP_MODE (since Linux 4.0, only on MIPS)

 Return (as the function result) the current floating-point mode

 (see the description of PR_SET_FP_MODE for details).

 On success, the call returns a bit mask which represents the

 current floating-point mode.

 The arguments arg2, arg3, arg4, and arg5 are ignored.

 PR_SET_FPEMU (since Linux 2.4.18, 2.5.9, only on ia64)

 Set floating-point emulation control bits to arg2. Pass

 PR_FPEMU_NOPRINT to silently emulate floating-point operation

 accesses, or PR_FPEMU_SIGFPE to not emulate floating-point oper?

 ations and send SIGFPE instead.

 PR_GET_FPEMU (since Linux 2.4.18, 2.5.9, only on ia64)

 Return floating-point emulation control bits, in the location

 pointed to by (int *) arg2.

 PR_SET_FPEXC (since Linux 2.4.21, 2.5.32, only on PowerPC)

 Set floating-point exception mode to arg2. Pass

 PR_FP_EXC_SW_ENABLE to use FPEXC for FP exception enables,

 PR_FP_EXC_DIV for floating-point divide by zero, PR_FP_EXC_OVF

 for floating-point overflow, PR_FP_EXC_UND for floating-point

 underflow, PR_FP_EXC_RES for floating-point inexact result,

 PR_FP_EXC_INV for floating-point invalid operation,

 PR_FP_EXC_DISABLED for FP exceptions disabled, PR_FP_EXC_NONRE?

 COV for async nonrecoverable exception mode, PR_FP_EXC_ASYNC for Page 7/31

 async recoverable exception mode, PR_FP_EXC_PRECISE for precise

 exception mode.

 PR_GET_FPEXC (since Linux 2.4.21, 2.5.32, only on PowerPC)

 Return floating-point exception mode, in the location pointed to

 by (int *) arg2.

 PR_SET_IO_FLUSHER (since Linux 5.6)

 If a user process is involved in the block layer or filesystem

 I/O path, and can allocate memory while processing I/O requests

 it must set arg2 to 1. This will put the process in the

 IO_FLUSHER state, which allows it special treatment to make

 progress when allocating memory. If arg2 is 0, the process will

 clear the IO_FLUSHER state, and the default behavior will be

 used.

 The calling process must have the CAP_SYS_RESOURCE capability.

 arg3, arg4, and arg5 must be zero.

 The IO_FLUSHER state is inherited by a child process created via

 fork(2) and is preserved across execve(2).

 Examples of IO_FLUSHER applications are FUSE daemons, SCSI de?

 vice emulation daemons, and daemons that perform error handling

 like multipath path recovery applications.

 PR_GET_IO_FLUSHER (Since Linux 5.6)

 Return (as the function result) the IO_FLUSHER state of the

 caller. A value of 1 indicates that the caller is in the

 IO_FLUSHER state; 0 indicates that the caller is not in the

 IO_FLUSHER state.

 The calling process must have the CAP_SYS_RESOURCE capability.

 arg2, arg3, arg4, and arg5 must be zero.

 PR_SET_KEEPCAPS (since Linux 2.2.18)

 Set the state of the calling thread's "keep capabilities" flag.

 The effect of this flag is described in capabilities(7). arg2

 must be either 0 (clear the flag) or 1 (set the flag). The

 "keep capabilities" value will be reset to 0 on subsequent calls

 to execve(2). Page 8/31

 PR_GET_KEEPCAPS (since Linux 2.2.18)

 Return (as the function result) the current state of the calling

 thread's "keep capabilities" flag. See capabilities(7) for a

 description of this flag.

 PR_MCE_KILL (since Linux 2.6.32)

 Set the machine check memory corruption kill policy for the

 calling thread. If arg2 is PR_MCE_KILL_CLEAR, clear the thread

 memory corruption kill policy and use the system-wide default.

 (The system-wide default is defined by /proc/sys/vm/memory_fail?

 ure_early_kill; see proc(5).) If arg2 is PR_MCE_KILL_SET, use a

 thread-specific memory corruption kill policy. In this case,

 arg3 defines whether the policy is early kill

 (PR_MCE_KILL_EARLY), late kill (PR_MCE_KILL_LATE), or the sys?

 tem-wide default (PR_MCE_KILL_DEFAULT). Early kill means that

 the thread receives a SIGBUS signal as soon as hardware memory

 corruption is detected inside its address space. In late kill

 mode, the process is killed only when it accesses a corrupted

 page. See sigaction(2) for more information on the SIGBUS sig?

 nal. The policy is inherited by children. The remaining unused

 prctl() arguments must be zero for future compatibility.

 PR_MCE_KILL_GET (since Linux 2.6.32)

 Return (as the function result) the current per-process machine

 check kill policy. All unused prctl() arguments must be zero.

 PR_SET_MM (since Linux 3.3)

 Modify certain kernel memory map descriptor fields of the call?

 ing process. Usually these fields are set by the kernel and dy?

 namic loader (see ld.so(8) for more information) and a regular

 application should not use this feature. However, there are

 cases, such as self-modifying programs, where a program might

 find it useful to change its own memory map.

 The calling process must have the CAP_SYS_RESOURCE capability.

 The value in arg2 is one of the options below, while arg3 pro?

 vides a new value for the option. The arg4 and arg5 arguments Page 9/31

 must be zero if unused.

 Before Linux 3.10, this feature is available only if the kernel

 is built with the CONFIG_CHECKPOINT_RESTORE option enabled.

 PR_SET_MM_START_CODE

 Set the address above which the program text can run.

 The corresponding memory area must be readable and exe?

 cutable, but not writable or shareable (see mprotect(2)

 and mmap(2) for more information).

 PR_SET_MM_END_CODE

 Set the address below which the program text can run.

 The corresponding memory area must be readable and exe?

 cutable, but not writable or shareable.

 PR_SET_MM_START_DATA

 Set the address above which initialized and uninitialized

 (bss) data are placed. The corresponding memory area

 must be readable and writable, but not executable or

 shareable.

 PR_SET_MM_END_DATA

 Set the address below which initialized and uninitialized

 (bss) data are placed. The corresponding memory area

 must be readable and writable, but not executable or

 shareable.

 PR_SET_MM_START_STACK

 Set the start address of the stack. The corresponding

 memory area must be readable and writable.

 PR_SET_MM_START_BRK

 Set the address above which the program heap can be ex?

 panded with brk(2) call. The address must be greater

 than the ending address of the current program data seg?

 ment. In addition, the combined size of the resulting

 heap and the size of the data segment can't exceed the

 RLIMIT_DATA resource limit (see setrlimit(2)).

 PR_SET_MM_BRK Page 10/31

 Set the current brk(2) value. The requirements for the

 address are the same as for the PR_SET_MM_START_BRK op?

 tion.

 The following options are available since Linux 3.5.

 PR_SET_MM_ARG_START

 Set the address above which the program command line is

 placed.

 PR_SET_MM_ARG_END

 Set the address below which the program command line is

 placed.

 PR_SET_MM_ENV_START

 Set the address above which the program environment is

 placed.

 PR_SET_MM_ENV_END

 Set the address below which the program environment is

 placed.

 The address passed with PR_SET_MM_ARG_START,

 PR_SET_MM_ARG_END, PR_SET_MM_ENV_START, and

 PR_SET_MM_ENV_END should belong to a process stack area.

 Thus, the corresponding memory area must be readable,

 writable, and (depending on the kernel configuration)

 have the MAP_GROWSDOWN attribute set (see mmap(2)).

 PR_SET_MM_AUXV

 Set a new auxiliary vector. The arg3 argument should

 provide the address of the vector. The arg4 is the size

 of the vector.

 PR_SET_MM_EXE_FILE

 Supersede the /proc/pid/exe symbolic link with a new one

 pointing to a new executable file identified by the file

 descriptor provided in arg3 argument. The file descrip?

 tor should be obtained with a regular open(2) call.

 To change the symbolic link, one needs to unmap all ex?

 isting executable memory areas, including those created Page 11/31

 by the kernel itself (for example the kernel usually cre?

 ates at least one executable memory area for the ELF

 .text section).

 In Linux 4.9 and earlier, the PR_SET_MM_EXE_FILE opera?

 tion can be performed only once in a process's lifetime;

 attempting to perform the operation a second time results

 in the error EPERM. This restriction was enforced for

 security reasons that were subsequently deemed specious,

 and the restriction was removed in Linux 4.10 because

 some user-space applications needed to perform this oper?

 ation more than once.

 The following options are available since Linux 3.18.

 PR_SET_MM_MAP

 Provides one-shot access to all the addresses by passing

 in a struct prctl_mm_map (as defined in <linux/prctl.h>).

 The arg4 argument should provide the size of the struct.

 This feature is available only if the kernel is built

 with the CONFIG_CHECKPOINT_RESTORE option enabled.

 PR_SET_MM_MAP_SIZE

 Returns the size of the struct prctl_mm_map the kernel

 expects. This allows user space to find a compatible

 struct. The arg4 argument should be a pointer to an un?

 signed int.

 This feature is available only if the kernel is built

 with the CONFIG_CHECKPOINT_RESTORE option enabled.

 PR_MPX_ENABLE_MANAGEMENT, PR_MPX_DISABLE_MANAGEMENT (since Linux 3.19,

 removed in Linux 5.4; only on x86)

 Enable or disable kernel management of Memory Protection eXten?

 sions (MPX) bounds tables. The arg2, arg3, arg4, and arg5 argu?

 ments must be zero.

 MPX is a hardware-assisted mechanism for performing bounds

 checking on pointers. It consists of a set of registers storing

 bounds information and a set of special instruction prefixes Page 12/31

 that tell the CPU on which instructions it should do bounds en?

 forcement. There is a limited number of these registers and

 when there are more pointers than registers, their contents must

 be "spilled" into a set of tables. These tables are called

 "bounds tables" and the MPX prctl() operations control whether

 the kernel manages their allocation and freeing.

 When management is enabled, the kernel will take over allocation

 and freeing of the bounds tables. It does this by trapping the

 #BR exceptions that result at first use of missing bounds tables

 and instead of delivering the exception to user space, it allo?

 cates the table and populates the bounds directory with the lo?

 cation of the new table. For freeing, the kernel checks to see

 if bounds tables are present for memory which is not allocated,

 and frees them if so.

 Before enabling MPX management using PR_MPX_ENABLE_MANAGEMENT,

 the application must first have allocated a user-space buffer

 for the bounds directory and placed the location of that direc?

 tory in the bndcfgu register.

 These calls fail if the CPU or kernel does not support MPX.

 Kernel support for MPX is enabled via the CONFIG_X86_INTEL_MPX

 configuration option. You can check whether the CPU supports

 MPX by looking for the mpx CPUID bit, like with the following

 command:

 cat /proc/cpuinfo | grep ' mpx '

 A thread may not switch in or out of long (64-bit) mode while

 MPX is enabled.

 All threads in a process are affected by these calls.

 The child of a fork(2) inherits the state of MPX management.

 During execve(2), MPX management is reset to a state as if

 PR_MPX_DISABLE_MANAGEMENT had been called.

 For further information on Intel MPX, see the kernel source file

 Documentation/x86/intel_mpx.txt.

 Due to a lack of toolchain support, PR_MPX_ENABLE_MANAGEMENT and Page 13/31

 PR_MPX_DISABLE_MANAGEMENT are not supported in Linux 5.4 and

 later.

 PR_SET_NAME (since Linux 2.6.9)

 Set the name of the calling thread, using the value in the loca?

 tion pointed to by (char *) arg2. The name can be up to 16

 bytes long, including the terminating null byte. (If the length

 of the string, including the terminating null byte, exceeds 16

 bytes, the string is silently truncated.) This is the same at?

 tribute that can be set via pthread_setname_np(3) and retrieved

 using pthread_getname_np(3). The attribute is likewise accessi?

 ble via /proc/self/task/[tid]/comm (see proc(5)), where [tid] is

 the thread ID of the calling thread, as returned by gettid(2).

 PR_GET_NAME (since Linux 2.6.11)

 Return the name of the calling thread, in the buffer pointed to

 by (char *) arg2. The buffer should allow space for up to 16

 bytes; the returned string will be null-terminated.

 PR_SET_NO_NEW_PRIVS (since Linux 3.5)

 Set the calling thread's no_new_privs attribute to the value in

 arg2. With no_new_privs set to 1, execve(2) promises not to

 grant privileges to do anything that could not have been done

 without the execve(2) call (for example, rendering the set-user-

 ID and set-group-ID mode bits, and file capabilities non-func?

 tional). Once set, the no_new_privs attribute cannot be unset.

 The setting of this attribute is inherited by children created

 by fork(2) and clone(2), and preserved across execve(2).

 Since Linux 4.10, the value of a thread's no_new_privs attribute

 can be viewed via the NoNewPrivs field in the /proc/[pid]/status

 file.

 For more information, see the kernel source file Documenta?

 tion/userspace-api/no_new_privs.rst (or Documenta?

 tion/prctl/no_new_privs.txt before Linux 4.13). See also sec?

 comp(2).

 PR_GET_NO_NEW_PRIVS (since Linux 3.5) Page 14/31

 Return (as the function result) the value of the no_new_privs

 attribute for the calling thread. A value of 0 indicates the

 regular execve(2) behavior. A value of 1 indicates execve(2)

 will operate in the privilege-restricting mode described above.

 PR_PAC_RESET_KEYS (since Linux 5.0, only on arm64)

 Securely reset the thread's pointer authentication keys to fresh

 random values generated by the kernel.

 The set of keys to be reset is specified by arg2, which must be

 a logical OR of zero or more of the following:

 PR_PAC_APIAKEY

 instruction authentication key A

 PR_PAC_APIBKEY

 instruction authentication key B

 PR_PAC_APDAKEY

 data authentication key A

 PR_PAC_APDBKEY

 data authentication key B

 PR_PAC_APGAKEY

 generic authentication ?A? key.

 (Yes folks, there really is no generic B key.)

 As a special case, if arg2 is zero, then all the keys are reset.

 Since new keys could be added in future, this is the recommended

 way to completely wipe the existing keys when establishing a

 clean execution context. Note that there is no need to use

 PR_PAC_RESET_KEYS in preparation for calling execve(2), since

 execve(2) resets all the pointer authentication keys.

 The remaining arguments arg3, arg4, and arg5 must all be zero.

 If the arguments are invalid, and in particular if arg2 contains

 set bits that are unrecognized or that correspond to a key not

 available on this platform, then the call fails with error EIN?

 VAL.

 Warning: Because the compiler or run-time environment may be us?

 ing some or all of the keys, a successful PR_PAC_RESET_KEYS may Page 15/31

 crash the calling process. The conditions for using it safely

 are complex and system-dependent. Don't use it unless you know

 what you are doing.

 For more information, see the kernel source file Documenta?

 tion/arm64/pointer-authentication.rst (or Documenta?

 tion/arm64/pointer-authentication.txt before Linux 5.3).

 PR_SET_PDEATHSIG (since Linux 2.1.57)

 Set the parent-death signal of the calling process to arg2 (ei?

 ther a signal value in the range 1..NSIG-1, or 0 to clear).

 This is the signal that the calling process will get when its

 parent dies.

 Warning: the "parent" in this case is considered to be the

 thread that created this process. In other words, the signal

 will be sent when that thread terminates (via, for example,

 pthread_exit(3)), rather than after all of the threads in the

 parent process terminate.

 The parent-death signal is sent upon subsequent termination of

 the parent thread and also upon termination of each subreaper

 process (see the description of PR_SET_CHILD_SUBREAPER above) to

 which the caller is subsequently reparented. If the parent

 thread and all ancestor subreapers have already terminated by

 the time of the PR_SET_PDEATHSIG operation, then no parent-death

 signal is sent to the caller.

 The parent-death signal is process-directed (see signal(7)) and,

 if the child installs a handler using the sigaction(2) SA_SIG?

 INFO flag, the si_pid field of the siginfo_t argument of the

 handler contains the PID of the terminating parent process.

 The parent-death signal setting is cleared for the child of a

 fork(2). It is also (since Linux 2.4.36 / 2.6.23) cleared when

 executing a set-user-ID or set-group-ID binary, or a binary that

 has associated capabilities (see capabilities(7)); otherwise,

 this value is preserved across execve(2). The parent-death sig?

 nal setting is also cleared upon changes to any of the following Page 16/31

 thread credentials: effective user ID, effective group ID,

 filesystem user ID, or filesystem group ID.

 PR_GET_PDEATHSIG (since Linux 2.3.15)

 Return the current value of the parent process death signal, in

 the location pointed to by (int *) arg2.

 PR_SET_PTRACER (since Linux 3.4)

 This is meaningful only when the Yama LSM is enabled and in mode

 1 ("restricted ptrace", visible via /proc/sys/ker?

 nel/yama/ptrace_scope). When a "ptracer process ID" is passed

 in arg2, the caller is declaring that the ptracer process can

 ptrace(2) the calling process as if it were a direct process an?

 cestor. Each PR_SET_PTRACER operation replaces the previous

 "ptracer process ID". Employing PR_SET_PTRACER with arg2 set to

 0 clears the caller's "ptracer process ID". If arg2 is

 PR_SET_PTRACER_ANY, the ptrace restrictions introduced by Yama

 are effectively disabled for the calling process.

 For further information, see the kernel source file Documenta?

 tion/admin-guide/LSM/Yama.rst (or Documentation/secu?

 rity/Yama.txt before Linux 4.13).

 PR_SET_SECCOMP (since Linux 2.6.23)

 Set the secure computing (seccomp) mode for the calling thread,

 to limit the available system calls. The more recent seccomp(2)

 system call provides a superset of the functionality of

 PR_SET_SECCOMP.

 The seccomp mode is selected via arg2. (The seccomp constants

 are defined in <linux/seccomp.h>.)

 With arg2 set to SECCOMP_MODE_STRICT, the only system calls that

 the thread is permitted to make are read(2), write(2), _exit(2)

 (but not exit_group(2)), and sigreturn(2). Other system calls

 result in the delivery of a SIGKILL signal. Strict secure com?

 puting mode is useful for number-crunching applications that may

 need to execute untrusted byte code, perhaps obtained by reading

 from a pipe or socket. This operation is available only if the Page 17/31

 kernel is configured with CONFIG_SECCOMP enabled.

 With arg2 set to SECCOMP_MODE_FILTER (since Linux 3.5), the sys?

 tem calls allowed are defined by a pointer to a Berkeley Packet

 Filter passed in arg3. This argument is a pointer to struct

 sock_fprog; it can be designed to filter arbitrary system calls

 and system call arguments. This mode is available only if the

 kernel is configured with CONFIG_SECCOMP_FILTER enabled.

 If SECCOMP_MODE_FILTER filters permit fork(2), then the seccomp

 mode is inherited by children created by fork(2); if execve(2)

 is permitted, then the seccomp mode is preserved across ex?

 ecve(2). If the filters permit prctl() calls, then additional

 filters can be added; they are run in order until the first non-

 allow result is seen.

 For further information, see the kernel source file Documenta?

 tion/userspace-api/seccomp_filter.rst (or Documenta?

 tion/prctl/seccomp_filter.txt before Linux 4.13).

 PR_GET_SECCOMP (since Linux 2.6.23)

 Return (as the function result) the secure computing mode of the

 calling thread. If the caller is not in secure computing mode,

 this operation returns 0; if the caller is in strict secure com?

 puting mode, then the prctl() call will cause a SIGKILL signal

 to be sent to the process. If the caller is in filter mode, and

 this system call is allowed by the seccomp filters, it returns

 2; otherwise, the process is killed with a SIGKILL signal. This

 operation is available only if the kernel is configured with

 CONFIG_SECCOMP enabled.

 Since Linux 3.8, the Seccomp field of the /proc/[pid]/status

 file provides a method of obtaining the same information, with?

 out the risk that the process is killed; see proc(5).

 PR_SET_SECUREBITS (since Linux 2.6.26)

 Set the "securebits" flags of the calling thread to the value

 supplied in arg2. See capabilities(7).

 PR_GET_SECUREBITS (since Linux 2.6.26) Page 18/31

 Return (as the function result) the "securebits" flags of the

 calling thread. See capabilities(7).

 PR_GET_SPECULATION_CTRL (since Linux 4.17)

 Return (as the function result) the state of the speculation

 misfeature specified in arg2. Currently, the only permitted

 value for this argument is PR_SPEC_STORE_BYPASS (otherwise the

 call fails with the error ENODEV).

 The return value uses bits 0-3 with the following meaning:

 PR_SPEC_PRCTL

 Mitigation can be controlled per thread by PR_SET_SPECU?

 LATION_CTRL.

 PR_SPEC_ENABLE

 The speculation feature is enabled, mitigation is dis?

 abled.

 PR_SPEC_DISABLE

 The speculation feature is disabled, mitigation is en?

 abled.

 PR_SPEC_FORCE_DISABLE

 Same as PR_SPEC_DISABLE but cannot be undone.

 PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)

 Same as PR_SPEC_DISABLE, but the state will be cleared on

 execve(2).

 If all bits are 0, then the CPU is not affected by the specula?

 tion misfeature.

 If PR_SPEC_PRCTL is set, then per-thread control of the mitiga?

 tion is available. If not set, prctl() for the speculation mis?

 feature will fail.

 The arg3, arg4, and arg5 arguments must be specified as 0; oth?

 erwise the call fails with the error EINVAL.

 PR_SET_SPECULATION_CTRL (since Linux 4.17)

 Sets the state of the speculation misfeature specified in arg2.

 The speculation-misfeature settings are per-thread attributes.

 Currently, arg2 must be one of: Page 19/31

 PR_SPEC_STORE_BYPASS

 Set the state of the speculative store bypass misfeature.

 PR_SPEC_INDIRECT_BRANCH (since Linux 4.20)

 Set the state of the indirect branch speculation misfea?

 ture.

 If arg2 does not have one of the above values, then the call

 fails with the error ENODEV.

 The arg3 argument is used to hand in the control value, which is

 one of the following:

 PR_SPEC_ENABLE

 The speculation feature is enabled, mitigation is dis?

 abled.

 PR_SPEC_DISABLE

 The speculation feature is disabled, mitigation is en?

 abled.

 PR_SPEC_FORCE_DISABLE

 Same as PR_SPEC_DISABLE, but cannot be undone. A subse?

 quent prctl(arg2, PR_SPEC_ENABLE) with the same value for

 arg2 will fail with the error EPERM.

 PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)

 Same as PR_SPEC_DISABLE, but the state will be cleared on

 execve(2). Currently only supported for arg2 equal to

 PR_SPEC_STORE_BYPASS.

 Any unsupported value in arg3 will result in the call failing

 with the error ERANGE.

 The arg4 and arg5 arguments must be specified as 0; otherwise

 the call fails with the error EINVAL.

 The speculation feature can also be controlled by the

 spec_store_bypass_disable boot parameter. This parameter may

 enforce a read-only policy which will result in the prctl() call

 failing with the error ENXIO. For further details, see the ker?

 nel source file Documentation/admin-guide/kernel-parameters.txt.

 PR_SVE_SET_VL (since Linux 4.15, only on arm64) Page 20/31

 Configure the thread's SVE vector length, as specified by (int)

 arg2. Arguments arg3, arg4, and arg5 are ignored.

 The bits of arg2 corresponding to PR_SVE_VL_LEN_MASK must be set

 to the desired vector length in bytes. This is interpreted as

 an upper bound: the kernel will select the greatest available

 vector length that does not exceed the value specified. In par?

 ticular, specifying SVE_VL_MAX (defined in <asm/sigcontext.h>)

 for the PR_SVE_VL_LEN_MASK bits requests the maximum supported

 vector length.

 In addition, the other bits of arg2 must be set to one of the

 following combinations of flags:

 0 Perform the change immediately. At the next execve(2) in

 the thread, the vector length will be reset to the value

 configured in /proc/sys/abi/sve_default_vector_length.

 PR_SVE_VL_INHERIT

 Perform the change immediately. Subsequent execve(2)

 calls will preserve the new vector length.

 PR_SVE_SET_VL_ONEXEC

 Defer the change, so that it is performed at the next ex?

 ecve(2) in the thread. Further execve(2) calls will re?

 set the vector length to the value configured in

 /proc/sys/abi/sve_default_vector_length.

 PR_SVE_SET_VL_ONEXEC | PR_SVE_VL_INHERIT

 Defer the change, so that it is performed at the next ex?

 ecve(2) in the thread. Further execve(2) calls will pre?

 serve the new vector length.

 In all cases, any previously pending deferred change is can?

 celed.

 The call fails with error EINVAL if SVE is not supported on the

 platform, if arg2 is unrecognized or invalid, or the value in

 the bits of arg2 corresponding to PR_SVE_VL_LEN_MASK is outside

 the range SVE_VL_MIN..SVE_VL_MAX or is not a multiple of 16.

 On success, a nonnegative value is returned that describes the Page 21/31

 selected configuration. If PR_SVE_SET_VL_ONEXEC was included in

 arg2, then the configuration described by the return value will

 take effect at the next execve(). Otherwise, the configuration

 is already in effect when the PR_SVE_SET_VL call returns. In

 either case, the value is encoded in the same way as the return

 value of PR_SVE_GET_VL. Note that there is no explicit flag in

 the return value corresponding to PR_SVE_SET_VL_ONEXEC.

 The configuration (including any pending deferred change) is in?

 herited across fork(2) and clone(2).

 For more information, see the kernel source file Documenta?

 tion/arm64/sve.rst (or Documentation/arm64/sve.txt before Linux

 5.3).

 Warning: Because the compiler or run-time environment may be us?

 ing SVE, using this call without the PR_SVE_SET_VL_ONEXEC flag

 may crash the calling process. The conditions for using it

 safely are complex and system-dependent. Don't use it unless

 you really know what you are doing.

 PR_SVE_GET_VL (since Linux 4.15, only on arm64)

 Get the thread's current SVE vector length configuration.

 Arguments arg2, arg3, arg4, and arg5 are ignored.

 Provided that the kernel and platform support SVE, this opera?

 tion always succeeds, returning a nonnegative value that de?

 scribes the current configuration. The bits corresponding to

 PR_SVE_VL_LEN_MASK contain the currently configured vector

 length in bytes. The bit corresponding to PR_SVE_VL_INHERIT in?

 dicates whether the vector length will be inherited across ex?

 ecve(2).

 Note that there is no way to determine whether there is a pend?

 ing vector length change that has not yet taken effect.

 For more information, see the kernel source file Documenta?

 tion/arm64/sve.rst (or Documentation/arm64/sve.txt before Linux

 5.3).

 PR_SET_TAGGED_ADDR_CTRL (since Linux 5.4, only on arm64) Page 22/31

 Controls support for passing tagged user-space addresses to the

 kernel (i.e., addresses where bits 56?63 are not all zero).

 The level of support is selected by arg2, which can be one of

 the following:

 0 Addresses that are passed for the purpose of being deref?

 erenced by the kernel must be untagged.

 PR_TAGGED_ADDR_ENABLE

 Addresses that are passed for the purpose of being deref?

 erenced by the kernel may be tagged, with the exceptions

 summarized below.

 The remaining arguments arg3, arg4, and arg5 must all be zero.

 On success, the mode specified in arg2 is set for the calling

 thread and the return value is 0. If the arguments are invalid,

 the mode specified in arg2 is unrecognized, or if this feature

 is unsupported by the kernel or disabled via

 /proc/sys/abi/tagged_addr_disabled, the call fails with the er?

 ror EINVAL.

 In particular, if prctl(PR_SET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)

 fails with EINVAL, then all addresses passed to the kernel must

 be untagged.

 Irrespective of which mode is set, addresses passed to certain

 interfaces must always be untagged:

 ? brk(2), mmap(2), shmat(2), shmdt(2), and the new_address argu?

 ment of mremap(2).

 (Prior to Linux 5.6 these accepted tagged addresses, but the

 behaviour may not be what you expect. Don't rely on it.)

 ? ?polymorphic? interfaces that accept pointers to arbitrary

 types cast to a void * or other generic type, specifically

 prctl(), ioctl(2), and in general setsockopt(2) (only certain

 specific setsockopt(2) options allow tagged addresses).

 This list of exclusions may shrink when moving from one kernel

 version to a later kernel version. While the kernel may make

 some guarantees for backwards compatibility reasons, for the Page 23/31

 purposes of new software the effect of passing tagged addresses

 to these interfaces is unspecified.

 The mode set by this call is inherited across fork(2) and

 clone(2). The mode is reset by execve(2) to 0 (i.e., tagged ad?

 dresses not permitted in the user/kernel ABI).

 For more information, see the kernel source file Documenta?

 tion/arm64/tagged-address-abi.rst.

 Warning: This call is primarily intended for use by the run-time

 environment. A successful PR_SET_TAGGED_ADDR_CTRL call else?

 where may crash the calling process. The conditions for using

 it safely are complex and system-dependent. Don't use it unless

 you know what you are doing.

 PR_GET_TAGGED_ADDR_CTRL (since Linux 5.4, only on arm64)

 Returns the current tagged address mode for the calling thread.

 Arguments arg2, arg3, arg4, and arg5 must all be zero.

 If the arguments are invalid or this feature is disabled or un?

 supported by the kernel, the call fails with EINVAL. In partic?

 ular, if prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) fails with

 EINVAL, then this feature is definitely either unsupported, or

 disabled via /proc/sys/abi/tagged_addr_disabled. In this case,

 all addresses passed to the kernel must be untagged.

 Otherwise, the call returns a nonnegative value describing the

 current tagged address mode, encoded in the same way as the arg2

 argument of PR_SET_TAGGED_ADDR_CTRL.

 For more information, see the kernel source file Documenta?

 tion/arm64/tagged-address-abi.rst.

 PR_TASK_PERF_EVENTS_DISABLE (since Linux 2.6.31)

 Disable all performance counters attached to the calling

 process, regardless of whether the counters were created by this

 process or another process. Performance counters created by the

 calling process for other processes are unaffected. For more

 information on performance counters, see the Linux kernel source

 file tools/perf/design.txt. Page 24/31

 Originally called PR_TASK_PERF_COUNTERS_DISABLE; renamed (re?

 taining the same numerical value) in Linux 2.6.32.

 PR_TASK_PERF_EVENTS_ENABLE (since Linux 2.6.31)

 The converse of PR_TASK_PERF_EVENTS_DISABLE; enable performance

 counters attached to the calling process.

 Originally called PR_TASK_PERF_COUNTERS_ENABLE; renamed in Linux

 2.6.32.

 PR_SET_THP_DISABLE (since Linux 3.15)

 Set the state of the "THP disable" flag for the calling thread.

 If arg2 has a nonzero value, the flag is set, otherwise it is

 cleared. Setting this flag provides a method for disabling

 transparent huge pages for jobs where the code cannot be modi?

 fied, and using a malloc hook with madvise(2) is not an option

 (i.e., statically allocated data). The setting of the "THP dis?

 able" flag is inherited by a child created via fork(2) and is

 preserved across execve(2).

 PR_GET_THP_DISABLE (since Linux 3.15)

 Return (as the function result) the current setting of the "THP

 disable" flag for the calling thread: either 1, if the flag is

 set, or 0, if it is not.

 PR_GET_TID_ADDRESS (since Linux 3.5)

 Return the clear_child_tid address set by set_tid_address(2) and

 the clone(2) CLONE_CHILD_CLEARTID flag, in the location pointed

 to by (int **) arg2. This feature is available only if the ker?

 nel is built with the CONFIG_CHECKPOINT_RESTORE option enabled.

 Note that since the prctl() system call does not have a compat

 implementation for the AMD64 x32 and MIPS n32 ABIs, and the ker?

 nel writes out a pointer using the kernel's pointer size, this

 operation expects a user-space buffer of 8 (not 4) bytes on

 these ABIs.

 PR_SET_TIMERSLACK (since Linux 2.6.28)

 Each thread has two associated timer slack values: a "default"

 value, and a "current" value. This operation sets the "current" Page 25/31

 timer slack value for the calling thread. arg2 is an unsigned

 long value, then maximum "current" value is ULONG_MAX and the

 minimum "current" value is 1. If the nanosecond value supplied

 in arg2 is greater than zero, then the "current" value is set to

 this value. If arg2 is equal to zero, the "current" timer slack

 is reset to the thread's "default" timer slack value.

 The "current" timer slack is used by the kernel to group timer

 expirations for the calling thread that are close to one an?

 other; as a consequence, timer expirations for the thread may be

 up to the specified number of nanoseconds late (but will never

 expire early). Grouping timer expirations can help reduce sys?

 tem power consumption by minimizing CPU wake-ups.

 The timer expirations affected by timer slack are those set by

 select(2), pselect(2), poll(2), ppoll(2), epoll_wait(2),

 epoll_pwait(2), clock_nanosleep(2), nanosleep(2), and futex(2)

 (and thus the library functions implemented via futexes, includ?

 ing pthread_cond_timedwait(3), pthread_mutex_timedlock(3),

 pthread_rwlock_timedrdlock(3), pthread_rwlock_timedwrlock(3),

 and sem_timedwait(3)).

 Timer slack is not applied to threads that are scheduled under a

 real-time scheduling policy (see sched_setscheduler(2)).

 When a new thread is created, the two timer slack values are

 made the same as the "current" value of the creating thread.

 Thereafter, a thread can adjust its "current" timer slack value

 via PR_SET_TIMERSLACK. The "default" value can't be changed.

 The timer slack values of init (PID 1), the ancestor of all pro?

 cesses, are 50,000 nanoseconds (50 microseconds). The timer

 slack value is inherited by a child created via fork(2), and is

 preserved across execve(2).

 Since Linux 4.6, the "current" timer slack value of any process

 can be examined and changed via the file /proc/[pid]/timer?

 slack_ns. See proc(5).

 PR_GET_TIMERSLACK (since Linux 2.6.28) Page 26/31

 Return (as the function result) the "current" timer slack value

 of the calling thread.

 PR_SET_TIMING (since Linux 2.6.0)

 Set whether to use (normal, traditional) statistical process

 timing or accurate timestamp-based process timing, by passing

 PR_TIMING_STATISTICAL or PR_TIMING_TIMESTAMP to arg2. PR_TIM?

 ING_TIMESTAMP is not currently implemented (attempting to set

 this mode will yield the error EINVAL).

 PR_GET_TIMING (since Linux 2.6.0)

 Return (as the function result) which process timing method is

 currently in use.

 PR_SET_TSC (since Linux 2.6.26, x86 only)

 Set the state of the flag determining whether the timestamp

 counter can be read by the process. Pass PR_TSC_ENABLE to arg2

 to allow it to be read, or PR_TSC_SIGSEGV to generate a SIGSEGV

 when the process tries to read the timestamp counter.

 PR_GET_TSC (since Linux 2.6.26, x86 only)

 Return the state of the flag determining whether the timestamp

 counter can be read, in the location pointed to by (int *) arg2.

 PR_SET_UNALIGN

 (Only on: ia64, since Linux 2.3.48; parisc, since Linux 2.6.15;

 PowerPC, since Linux 2.6.18; Alpha, since Linux 2.6.22; sh,

 since Linux 2.6.34; tile, since Linux 3.12) Set unaligned access

 control bits to arg2. Pass PR_UNALIGN_NOPRINT to silently fix

 up unaligned user accesses, or PR_UNALIGN_SIGBUS to generate

 SIGBUS on unaligned user access. Alpha also supports an addi?

 tional flag with the value of 4 and no corresponding named con?

 stant, which instructs kernel to not fix up unaligned accesses

 (it is analogous to providing the UAC_NOFIX flag in SSI_NVPAIRS

 operation of the setsysinfo() system call on Tru64).

 PR_GET_UNALIGN

 (See PR_SET_UNALIGN for information on versions and architec?

 tures.) Return unaligned access control bits, in the location Page 27/31

 pointed to by (unsigned int *) arg2.

RETURN VALUE

 On success, PR_CAP_AMBIENT+PR_CAP_AMBIENT_IS_SET, PR_CAPBSET_READ,

 PR_GET_DUMPABLE, PR_GET_FP_MODE, PR_GET_IO_FLUSHER, PR_GET_KEEPCAPS,

 PR_MCE_KILL_GET, PR_GET_NO_NEW_PRIVS, PR_GET_SECUREBITS, PR_GET_SPECU?

 LATION_CTRL, PR_SVE_GET_VL, PR_SVE_SET_VL, PR_GET_TAGGED_ADDR_CTRL,

 PR_GET_THP_DISABLE, PR_GET_TIMING, PR_GET_TIMERSLACK, and (if it re?

 turns) PR_GET_SECCOMP return the nonnegative values described above.

 All other option values return 0 on success. On error, -1 is returned,

 and errno is set appropriately.

ERRORS

 EACCES option is PR_SET_SECCOMP and arg2 is SECCOMP_MODE_FILTER, but

 the process does not have the CAP_SYS_ADMIN capability or has

 not set the no_new_privs attribute (see the discussion of

 PR_SET_NO_NEW_PRIVS above).

 EACCES option is PR_SET_MM, and arg3 is PR_SET_MM_EXE_FILE, the file is

 not executable.

 EBADF option is PR_SET_MM, arg3 is PR_SET_MM_EXE_FILE, and the file

 descriptor passed in arg4 is not valid.

 EBUSY option is PR_SET_MM, arg3 is PR_SET_MM_EXE_FILE, and this the

 second attempt to change the /proc/pid/exe symbolic link, which

 is prohibited.

 EFAULT arg2 is an invalid address.

 EFAULT option is PR_SET_SECCOMP, arg2 is SECCOMP_MODE_FILTER, the sys?

 tem was built with CONFIG_SECCOMP_FILTER, and arg3 is an invalid

 address.

 EINVAL The value of option is not recognized, or not supported on this

 system.

 EINVAL option is PR_MCE_KILL or PR_MCE_KILL_GET or PR_SET_MM, and un?

 used prctl() arguments were not specified as zero.

 EINVAL arg2 is not valid value for this option.

 EINVAL option is PR_SET_SECCOMP or PR_GET_SECCOMP, and the kernel was

 not configured with CONFIG_SECCOMP. Page 28/31

 EINVAL option is PR_SET_SECCOMP, arg2 is SECCOMP_MODE_FILTER, and the

 kernel was not configured with CONFIG_SECCOMP_FILTER.

 EINVAL option is PR_SET_MM, and one of the following is true

 * arg4 or arg5 is nonzero;

 * arg3 is greater than TASK_SIZE (the limit on the size of the

 user address space for this architecture);

 * arg2 is PR_SET_MM_START_CODE, PR_SET_MM_END_CODE,

 PR_SET_MM_START_DATA, PR_SET_MM_END_DATA, or

 PR_SET_MM_START_STACK, and the permissions of the correspond?

 ing memory area are not as required;

 * arg2 is PR_SET_MM_START_BRK or PR_SET_MM_BRK, and arg3 is

 less than or equal to the end of the data segment or speci?

 fies a value that would cause the RLIMIT_DATA resource limit

 to be exceeded.

 EINVAL option is PR_SET_PTRACER and arg2 is not 0, PR_SET_PTRACER_ANY,

 or the PID of an existing process.

 EINVAL option is PR_SET_PDEATHSIG and arg2 is not a valid signal num?

 ber.

 EINVAL option is PR_SET_DUMPABLE and arg2 is neither SUID_DUMP_DISABLE

 nor SUID_DUMP_USER.

 EINVAL option is PR_SET_TIMING and arg2 is not PR_TIMING_STATISTICAL.

 EINVAL option is PR_SET_NO_NEW_PRIVS and arg2 is not equal to 1 or

 arg3, arg4, or arg5 is nonzero.

 EINVAL option is PR_GET_NO_NEW_PRIVS and arg2, arg3, arg4, or arg5 is

 nonzero.

 EINVAL option is PR_SET_THP_DISABLE and arg3, arg4, or arg5 is nonzero.

 EINVAL option is PR_GET_THP_DISABLE and arg2, arg3, arg4, or arg5 is

 nonzero.

 EINVAL option is PR_CAP_AMBIENT and an unused argument (arg4, arg5, or,

 in the case of PR_CAP_AMBIENT_CLEAR_ALL, arg3) is nonzero; or

 arg2 has an invalid value; or arg2 is PR_CAP_AMBIENT_LOWER,

 PR_CAP_AMBIENT_RAISE, or PR_CAP_AMBIENT_IS_SET and arg3 does not

 specify a valid capability. Page 29/31

 EINVAL option was PR_GET_SPECULATION_CTRL or PR_SET_SPECULATION_CTRL

 and unused arguments to prctl() are not 0. EINVAL option is

 PR_PAC_RESET_KEYS and the arguments are invalid or unsupported.

 See the description of PR_PAC_RESET_KEYS above for details.

 EINVAL option is PR_SVE_SET_VL and the arguments are invalid or unsup?

 ported, or SVE is not available on this platform. See the de?

 scription of PR_SVE_SET_VL above for details.

 EINVAL option is PR_SVE_GET_VL and SVE is not available on this plat?

 form.

 EINVAL option is PR_SET_TAGGED_ADDR_CTRL and the arguments are invalid

 or unsupported. See the description of PR_SET_TAGGED_ADDR_CTRL

 above for details.

 EINVAL option is PR_GET_TAGGED_ADDR_CTRL and the arguments are invalid

 or unsupported. See the description of PR_GET_TAGGED_ADDR_CTRL

 above for details.

 ENODEV option was PR_SET_SPECULATION_CTRL the kernel or CPU does not

 support the requested speculation misfeature.

 ENXIO option was PR_MPX_ENABLE_MANAGEMENT or PR_MPX_DISABLE_MANAGEMENT

 and the kernel or the CPU does not support MPX management.

 Check that the kernel and processor have MPX support.

 ENXIO option was PR_SET_SPECULATION_CTRL implies that the control of

 the selected speculation misfeature is not possible. See

 PR_GET_SPECULATION_CTRL for the bit fields to determine which

 option is available.

 EOPNOTSUPP

 option is PR_SET_FP_MODE and arg2 has an invalid or unsupported

 value.

 EPERM option is PR_SET_SECUREBITS, and the caller does not have the

 CAP_SETPCAP capability, or tried to unset a "locked" flag, or

 tried to set a flag whose corresponding locked flag was set (see

 capabilities(7)).

 EPERM option is PR_SET_SPECULATION_CTRL wherein the speculation was

 disabled with PR_SPEC_FORCE_DISABLE and caller tried to enable Page 30/31

 it again.

 EPERM option is PR_SET_KEEPCAPS, and the caller's

 SECBIT_KEEP_CAPS_LOCKED flag is set (see capabilities(7)).

 EPERM option is PR_CAPBSET_DROP, and the caller does not have the

 CAP_SETPCAP capability.

 EPERM option is PR_SET_MM, and the caller does not have the

 CAP_SYS_RESOURCE capability.

 EPERM option is PR_CAP_AMBIENT and arg2 is PR_CAP_AMBIENT_RAISE, but

 either the capability specified in arg3 is not present in the

 process's permitted and inheritable capability sets, or the

 PR_CAP_AMBIENT_LOWER securebit has been set.

 ERANGE option was PR_SET_SPECULATION_CTRL and arg3 is not PR_SPEC_EN?

 ABLE, PR_SPEC_DISABLE, PR_SPEC_FORCE_DISABLE, nor PR_SPEC_DIS?

 ABLE_NOEXEC.

VERSIONS

 The prctl() system call was introduced in Linux 2.1.57.

CONFORMING TO

 This call is Linux-specific. IRIX has a prctl() system call (also in?

 troduced in Linux 2.1.44 as irix_prctl on the MIPS architecture), with

 prototype

 ptrdiff_t prctl(int option, int arg2, int arg3);

 and options to get the maximum number of processes per user, get the

 maximum number of processors the calling process can use, find out

 whether a specified process is currently blocked, get or set the maxi?

 mum stack size, and so on.

SEE ALSO

 signal(2), core(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 PRCTL(2) Page 31/31

