
Rocky Enterprise Linux 9.2 Manual Pages on command 'python.1'

$ man python.1

PYTHON(1) General Commands Manual PYTHON(1)

NAME

 python - an interpreted, interactive, object-oriented programming lan?

 guage

SYNOPSIS

 python [-B] [-b] [-d] [-E] [-h] [-i] [-I]

 [-m module-name] [-q] [-O] [-OO] [-s] [-S] [-u]

 [-v] [-V] [-W argument] [-x] [[-X option] -?]

 [--check-hash-based-pycs default | always | never]

 [-c command | script | -] [arguments]

DESCRIPTION

 Python is an interpreted, interactive, object-oriented programming lan?

 guage that combines remarkable power with very clear syntax. For an

 introduction to programming in Python, see the Python Tutorial. The

 Python Library Reference documents built-in and standard types, con?

 stants, functions and modules. Finally, the Python Reference Manual

 describes the syntax and semantics of the core language in (perhaps

 too) much detail. (These documents may be located via the INTERNET RE? Page 1/12

 SOURCES below; they may be installed on your system as well.)

 Python's basic power can be extended with your own modules written in C

 or C++. On most systems such modules may be dynamically loaded.

 Python is also adaptable as an extension language for existing applica?

 tions. See the internal documentation for hints.

 Documentation for installed Python modules and packages can be viewed

 by running the pydoc program.

COMMAND LINE OPTIONS

 -B Don't write .pyc files on import. See also PYTHONDONTWRITEBYTE?

 CODE.

 -b Issue warnings about str(bytes_instance), str(bytearray_in?

 stance) and comparing bytes/bytearray with str. (-bb: issue er?

 rors)

 -c command

 Specify the command to execute (see next section). This termi?

 nates the option list (following options are passed as arguments

 to the command).

 --check-hash-based-pycs mode

 Configure how Python evaluates the up-to-dateness of hash-based

 .pyc files.

 -d Turn on parser debugging output (for expert only, depending on

 compilation options).

 -E Ignore environment variables like PYTHONPATH and PYTHONHOME that

 modify the behavior of the interpreter.

 -h , -? , --help

 Prints the usage for the interpreter executable and exits.

 -i When a script is passed as first argument or the -c option is

 used, enter interactive mode after executing the script or the

 command. It does not read the $PYTHONSTARTUP file. This can be

 useful to inspect global variables or a stack trace when a

 script raises an exception.

 -I Run Python in isolated mode. This also implies -E and -s. In

 isolated mode sys.path contains neither the script's directory Page 2/12

 nor the user's site-packages directory. All PYTHON* environment

 variables are ignored, too. Further restrictions may be imposed

 to prevent the user from injecting malicious code.

 -m module-name

 Searches sys.path for the named module and runs the correspond?

 ing .py file as a script.

 -O Remove assert statements and any code conditional on the value

 of __debug__; augment the filename for compiled (bytecode) files

 by adding .opt-1 before the .pyc extension.

 -OO Do -O and also discard docstrings; change the filename for com?

 piled (bytecode) files by adding .opt-2 before the .pyc exten?

 sion.

 -q Do not print the version and copyright messages. These messages

 are also suppressed in non-interactive mode.

 -s Don't add user site directory to sys.path.

 -S Disable the import of the module site and the site-dependent ma?

 nipulations of sys.path that it entails. Also disable these ma?

 nipulations if site is explicitly imported later.

 -u Force the stdout and stderr streams to be unbuffered. This op?

 tion has no effect on the stdin stream.

 -v Print a message each time a module is initialized, showing the

 place (filename or built-in module) from which it is loaded.

 When given twice, print a message for each file that is checked

 for when searching for a module. Also provides information on

 module cleanup at exit.

 -V , --version

 Prints the Python version number of the executable and exits.

 When given twice, print more information about the build.

 -W argument

 Warning control. Python sometimes prints warning message to

 sys.stderr. A typical warning message has the following form:

 file:line: category: message. By default, each warning is

 printed once for each source line where it occurs. This option Page 3/12

 controls how often warnings are printed. Multiple -W options

 may be given; when a warning matches more than one option, the

 action for the last matching option is performed. Invalid -W

 options are ignored (a warning message is printed about invalid

 options when the first warning is issued). Warnings can also be

 controlled from within a Python program using the warnings mod?

 ule.

 The simplest form of argument is one of the following action

 strings (or a unique abbreviation): ignore to ignore all warn?

 ings; default to explicitly request the default behavior (print?

 ing each warning once per source line); all to print a warning

 each time it occurs (this may generate many messages if a warn?

 ing is triggered repeatedly for the same source line, such as

 inside a loop); module to print each warning only the first time

 it occurs in each module; once to print each warning only the

 first time it occurs in the program; or error to raise an excep?

 tion instead of printing a warning message.

 The full form of argument is action:message:category:mod?

 ule:line. Here, action is as explained above but only applies

 to messages that match the remaining fields. Empty fields match

 all values; trailing empty fields may be omitted. The message

 field matches the start of the warning message printed; this

 match is case-insensitive. The category field matches the warn?

 ing category. This must be a class name; the match test whether

 the actual warning category of the message is a subclass of the

 specified warning category. The full class name must be given.

 The module field matches the (fully-qualified) module name; this

 match is case-sensitive. The line field matches the line num?

 ber, where zero matches all line numbers and is thus equivalent

 to an omitted line number.

 -X option

 Set implementation specific option. The following options are

 available: Page 4/12

 -X faulthandler: enable faulthandler

 -X showrefcount: output the total reference count and number

 of used

 memory blocks when the program finishes or after each

 statement in the

 interactive interpreter. This only works on debug builds

 -X tracemalloc: start tracing Python memory allocations us?

 ing the

 tracemalloc module. By default, only the most recent

 frame is stored in a

 traceback of a trace. Use -X tracemalloc=NFRAME to start

 tracing with a

 traceback limit of NFRAME frames

 -X importtime: show how long each import takes. It shows

 module name,

 cumulative time (including nested imports) and self time

 (excluding

 nested imports). Note that its output may be broken in

 multi-threaded

 application. Typical usage is python3 -X importtime -c

 'import asyncio'

 -X dev: enable CPython's "development mode", introducing ad?

 ditional runtime

 checks which are too expensive to be enabled by default.

 It will not be

 more verbose than the default if the code is correct:

 new warnings are

 only emitted when an issue is detected. Effect of the

 developer mode:

 * Add default warning filter, as -W default

 * Install debug hooks on memory allocators: see the

 PyMem_SetupDebugHooks() C function

 * Enable the faulthandler module to dump the Python Page 5/12

 traceback on a crash

 * Enable asyncio debug mode

 * Set the dev_mode attribute of sys.flags to True

 * io.IOBase destructor logs close() exceptions

 -X utf8: enable UTF-8 mode for operating system interfaces,

 overriding the default

 locale-aware mode. -X utf8=0 explicitly disables UTF-8

 mode (even when it would

 otherwise activate automatically). See PYTHONUTF8 for

 more details

 -X pycache_prefix=PATH: enable writing .pyc files to a par?

 allel tree rooted at the

 given directory instead of to the code tree.

 -x Skip the first line of the source. This is intended for a DOS

 specific hack only. Warning: the line numbers in error messages

 will be off by one!

INTERPRETER INTERFACE

 The interpreter interface resembles that of the UNIX shell: when called

 with standard input connected to a tty device, it prompts for commands

 and executes them until an EOF is read; when called with a file name

 argument or with a file as standard input, it reads and executes a

 script from that file; when called with -c command, it executes the

 Python statement(s) given as command. Here command may contain multi?

 ple statements separated by newlines. Leading whitespace is signifi?

 cant in Python statements! In non-interactive mode, the entire input

 is parsed before it is executed.

 If available, the script name and additional arguments thereafter are

 passed to the script in the Python variable sys.argv, which is a list

 of strings (you must first import sys to be able to access it). If no

 script name is given, sys.argv[0] is an empty string; if -c is used,

 sys.argv[0] contains the string '-c'. Note that options interpreted by

 the Python interpreter itself are not placed in sys.argv.

 In interactive mode, the primary prompt is `>>>'; the second prompt Page 6/12

 (which appears when a command is not complete) is `...'. The prompts

 can be changed by assignment to sys.ps1 or sys.ps2. The interpreter

 quits when it reads an EOF at a prompt. When an unhandled exception

 occurs, a stack trace is printed and control returns to the primary

 prompt; in non-interactive mode, the interpreter exits after printing

 the stack trace. The interrupt signal raises the KeyboardInterrupt ex?

 ception; other UNIX signals are not caught (except that SIGPIPE is

 sometimes ignored, in favor of the IOError exception). Error messages

 are written to stderr.

FILES AND DIRECTORIES

 These are subject to difference depending on local installation conven?

 tions; ${prefix} and ${exec_prefix} are installation-dependent and

 should be interpreted as for GNU software; they may be the same. The

 default for both is /usr/local.

 ${exec_prefix}/bin/python

 Recommended location of the interpreter.

 ${prefix}/lib/python<version>

 ${exec_prefix}/lib/python<version>

 Recommended locations of the directories containing the standard

 modules.

 ${prefix}/include/python<version>

 ${exec_prefix}/include/python<version>

 Recommended locations of the directories containing the include

 files needed for developing Python extensions and embedding the

 interpreter.

ENVIRONMENT VARIABLES

 PYTHONHOME

 Change the location of the standard Python libraries. By de?

 fault, the libraries are searched in ${prefix}/lib/python<ver?

 sion> and ${exec_prefix}/lib/python<version>, where ${prefix}

 and ${exec_prefix} are installation-dependent directories, both

 defaulting to /usr/local. When $PYTHONHOME is set to a single

 directory, its value replaces both ${prefix} and ${exec_prefix}. Page 7/12

 To specify different values for these, set $PYTHONHOME to ${pre?

 fix}:${exec_prefix}.

 PYTHONPATH

 Augments the default search path for module files. The format

 is the same as the shell's $PATH: one or more directory path?

 names separated by colons. Non-existent directories are

 silently ignored. The default search path is installation de?

 pendent, but generally begins with ${prefix}/lib/python<version>

 (see PYTHONHOME above). The default search path is always ap?

 pended to $PYTHONPATH. If a script argument is given, the di?

 rectory containing the script is inserted in the path in front

 of $PYTHONPATH. The search path can be manipulated from within

 a Python program as the variable sys.path.

 PYTHONPLATLIBDIR

 Override sys.platlibdir.

 PYTHONSTARTUP

 If this is the name of a readable file, the Python commands in

 that file are executed before the first prompt is displayed in

 interactive mode. The file is executed in the same name space

 where interactive commands are executed so that objects defined

 or imported in it can be used without qualification in the in?

 teractive session. You can also change the prompts sys.ps1 and

 sys.ps2 in this file.

 PYTHONOPTIMIZE

 If this is set to a non-empty string it is equivalent to speci?

 fying the -O option. If set to an integer, it is equivalent to

 specifying -O multiple times.

 PYTHONDEBUG

 If this is set to a non-empty string it is equivalent to speci?

 fying the -d option. If set to an integer, it is equivalent to

 specifying -d multiple times.

 PYTHONDONTWRITEBYTECODE

 If this is set to a non-empty string it is equivalent to speci? Page 8/12

 fying the -B option (don't try to write .pyc files).

 PYTHONINSPECT

 If this is set to a non-empty string it is equivalent to speci?

 fying the -i option.

 PYTHONIOENCODING

 If this is set before running the interpreter, it overrides the

 encoding used for stdin/stdout/stderr, in the syntax encoding?

 name:errorhandler The errorhandler part is optional and has the

 same meaning as in str.encode. For stderr, the errorhandler

 part is ignored; the handler will always be ?backslashreplace?.

 PYTHONNOUSERSITE

 If this is set to a non-empty string it is equivalent to speci?

 fying the -s option (Don't add the user site directory to

 sys.path).

 PYTHONUNBUFFERED

 If this is set to a non-empty string it is equivalent to speci?

 fying the -u option.

 PYTHONVERBOSE

 If this is set to a non-empty string it is equivalent to speci?

 fying the -v option. If set to an integer, it is equivalent to

 specifying -v multiple times.

 PYTHONWARNINGS

 If this is set to a comma-separated string it is equivalent to

 specifying the -W option for each separate value.

 PYTHONHASHSEED

 If this variable is set to "random", a random value is used to

 seed the hashes of str and bytes objects.

 If PYTHONHASHSEED is set to an integer value, it is used as a

 fixed seed for generating the hash() of the types covered by the

 hash randomization. Its purpose is to allow repeatable hashing,

 such as for selftests for the interpreter itself, or to allow a

 cluster of python processes to share hash values.

 The integer must be a decimal number in the range Page 9/12

 [0,4294967295]. Specifying the value 0 will disable hash ran?

 domization.

 PYTHONMALLOC

 Set the Python memory allocators and/or install debug hooks. The

 available memory allocators are malloc and pymalloc. The avail?

 able debug hooks are debug, malloc_debug, and pymalloc_debug.

 When Python is compiled in debug mode, the default is pymal?

 loc_debug and the debug hooks are automatically used. Otherwise,

 the default is pymalloc.

 PYTHONMALLOCSTATS

 If set to a non-empty string, Python will print statistics of

 the pymalloc memory allocator every time a new pymalloc object

 arena is created, and on shutdown.

 This variable is ignored if the $PYTHONMALLOC environment vari?

 able is used to force the malloc(3) allocator of the C library,

 or if Python is configured without pymalloc support.

 PYTHONASYNCIODEBUG

 If this environment variable is set to a non-empty string, en?

 able the debug mode of the asyncio module.

 PYTHONTRACEMALLOC

 If this environment variable is set to a non-empty string, start

 tracing Python memory allocations using the tracemalloc module.

 The value of the variable is the maximum number of frames stored

 in a traceback of a trace. For example, PYTHONTRACEMALLOC=1

 stores only the most recent frame.

 PYTHONFAULTHANDLER

 If this environment variable is set to a non-empty string,

 faulthandler.enable() is called at startup: install a handler

 for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump

 the Python traceback.

 This is equivalent to the -X faulthandler option.

 PYTHONEXECUTABLE

 If this environment variable is set, sys.argv[0] will be set to Page 10/12

 its value instead of the value got through the C runtime. Only

 works on Mac OS X.

 PYTHONUSERBASE

 Defines the user base directory, which is used to compute the

 path of the user site-packages directory and Distutils installa?

 tion paths for python setup.py install --user.

 PYTHONPROFILEIMPORTTIME

 If this environment variable is set to a non-empty string,

 Python will show how long each import takes. This is exactly

 equivalent to setting -X importtime on the command line.

 PYTHONBREAKPOINT

 If this environment variable is set to 0, it disables the de?

 fault debugger. It can be set to the callable of your debugger

 of choice.

 Debug-mode variables

 Setting these variables only has an effect in a debug build of Python,

 that is, if Python was configured with the --with-pydebug build option.

 PYTHONTHREADDEBUG

 If this environment variable is set, Python will print threading

 debug info.

 PYTHONDUMPREFS

 If this environment variable is set, Python will dump objects

 and reference counts still alive after shutting down the inter?

 preter.

AUTHOR

 The Python Software Foundation: https://www.python.org/psf/

INTERNET RESOURCES

 Main website: https://www.python.org/

 Documentation: https://docs.python.org/

 Developer resources: https://devguide.python.org/

 Downloads: https://www.python.org/downloads/

 Module repository: https://pypi.org/

 Newsgroups: comp.lang.python, comp.lang.python.announce Page 11/12

LICENSING

 Python is distributed under an Open Source license. See the file "LI?

 CENSE" in the Python source distribution for information on terms &

 conditions for accessing and otherwise using Python and for a DIS?

 CLAIMER OF ALL WARRANTIES.

 PYTHON(1)

Page 12/12

