
Rocky Enterprise Linux 9.2 Manual Pages on command 'semget.2'

$ man semget.2

SEMGET(2) Linux Programmer's Manual SEMGET(2)

NAME

 semget - get a System V semaphore set identifier

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 int semget(key_t key, int nsems, int semflg);

DESCRIPTION

 The semget() system call returns the System V semaphore set identifier

 associated with the argument key. It may be used either to obtain the

 identifier of a previously created semaphore set (when semflg is zero

 and key does not have the value IPC_PRIVATE), or to create a new set.

 A new set of nsems semaphores is created if key has the value IPC_PRI?

 VATE or if no existing semaphore set is associated with key and

 IPC_CREAT is specified in semflg.

 If semflg specifies both IPC_CREAT and IPC_EXCL and a semaphore set al?

 ready exists for key, then semget() fails with errno set to EEXIST. Page 1/7

 (This is analogous to the effect of the combination O_CREAT | O_EXCL

 for open(2).)

 Upon creation, the least significant 9 bits of the argument semflg de?

 fine the permissions (for owner, group and others) for the semaphore

 set. These bits have the same format, and the same meaning, as the

 mode argument of open(2) (though the execute permissions are not mean?

 ingful for semaphores, and write permissions mean permission to alter

 semaphore values).

 When creating a new semaphore set, semget() initializes the set's asso?

 ciated data structure, semid_ds (see semctl(2)), as follows:

 ? sem_perm.cuid and sem_perm.uid are set to the effective user ID of

 the calling process.

 ? sem_perm.cgid and sem_perm.gid are set to the effective group ID of

 the calling process.

 ? The least significant 9 bits of sem_perm.mode are set to the least

 significant 9 bits of semflg.

 ? sem_nsems is set to the value of nsems.

 ? sem_otime is set to 0.

 ? sem_ctime is set to the current time.

 The argument nsems can be 0 (a don't care) when a semaphore set is not

 being created. Otherwise, nsems must be greater than 0 and less than

 or equal to the maximum number of semaphores per semaphore set

 (SEMMSL).

 If the semaphore set already exists, the permissions are verified.

RETURN VALUE

 If successful, the return value will be the semaphore set identifier (a

 nonnegative integer), otherwise, -1 is returned, with errno indicating

 the error.

ERRORS

 On failure, errno will be set to one of the following:

 EACCES A semaphore set exists for key, but the calling process does not

 have permission to access the set, and does not have the

 CAP_IPC_OWNER capability in the user namespace that governs its Page 2/7

 IPC namespace.

 EEXIST IPC_CREAT and IPC_EXCL were specified in semflg, but a semaphore

 set already exists for key.

 EINVAL nsems is less than 0 or greater than the limit on the number of

 semaphores per semaphore set (SEMMSL).

 EINVAL A semaphore set corresponding to key already exists, but nsems

 is larger than the number of semaphores in that set.

 ENOENT No semaphore set exists for key and semflg did not specify

 IPC_CREAT.

 ENOMEM A semaphore set has to be created but the system does not have

 enough memory for the new data structure.

 ENOSPC A semaphore set has to be created but the system limit for the

 maximum number of semaphore sets (SEMMNI), or the system wide

 maximum number of semaphores (SEMMNS), would be exceeded.

CONFORMING TO

 SVr4, POSIX.1-2001.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux

 or by any version of POSIX. However, some old implementations required

 the inclusion of these header files, and the SVID also documented their

 inclusion. Applications intended to be portable to such old systems

 may need to include these header files.

 IPC_PRIVATE isn't a flag field but a key_t type. If this special value

 is used for key, the system call ignores all but the least significant

 9 bits of semflg and creates a new semaphore set (on success).

 Semaphore initialization

 The values of the semaphores in a newly created set are indeterminate.

 (POSIX.1-2001 and POSIX.1-2008 are explicit on this point, although

 POSIX.1-2008 notes that a future version of the standard may require an

 implementation to initialize the semaphores to 0.) Although Linux,

 like many other implementations, initializes the semaphore values to 0,

 a portable application cannot rely on this: it should explicitly ini?

 tialize the semaphores to the desired values. Page 3/7

 Initialization can be done using semctl(2) SETVAL or SETALL operation.

 Where multiple peers do not know who will be the first to initialize

 the set, checking for a nonzero sem_otime in the associated data struc?

 ture retrieved by a semctl(2) IPC_STAT operation can be used to avoid

 races.

 Semaphore limits

 The following limits on semaphore set resources affect the semget()

 call:

 SEMMNI System-wide limit on the number of semaphore sets. On Linux

 systems before version 3.19, the default value for this limit

 was 128. Since Linux 3.19, the default value is 32,000. On

 Linux, this limit can be read and modified via the fourth field

 of /proc/sys/kernel/sem.

 SEMMSL Maximum number of semaphores per semaphore ID. On Linux systems

 before version 3.19, the default value for this limit was 250.

 Since Linux 3.19, the default value is 32,000. On Linux, this

 limit can be read and modified via the first field of

 /proc/sys/kernel/sem.

 SEMMNS System-wide limit on the number of semaphores: policy dependent

 (on Linux, this limit can be read and modified via the second

 field of /proc/sys/kernel/sem). Note that the number of sema?

 phores system-wide is also limited by the product of SEMMSL and

 SEMMNI.

BUGS

 The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more

 clearly show its function.

EXAMPLES

 The program shown below uses semget() to create a new semaphore set or

 retrieve the ID of an existing set. It generates the key for semget()

 using ftok(3). The first two command-line arguments are used as the

 pathname and proj_id arguments for ftok(3). The third command-line ar?

 gument is an integer that specifies the nsems argument for semget().

 Command-line options can be used to specify the IPC_CREAT (-c) and Page 4/7

 IPC_EXCL (-x) flags for the call to semget(). The usage of this pro?

 gram is demonstrated below.

 We first create two files that will be used to generate keys using

 ftok(3), create two semaphore sets using those files, and then list the

 sets using ipcs(1):

 $ touch mykey mykey2

 $./t_semget -c mykey p 1

 ID = 9

 $./t_semget -c mykey2 p 2

 ID = 10

 $ ipcs -s

 ------ Semaphore Arrays --------

 key semid owner perms nsems

 0x7004136d 9 mtk 600 1

 0x70041368 10 mtk 600 2

 Next, we demonstrate that when semctl(2) is given the same key (as gen?

 erated by the same arguments to ftok(3)), it returns the ID of the al?

 ready existing semaphore set:

 $./t_semget -c mykey p 1

 ID = 9

 Finally, we demonstrate the kind of collision that can occur when

 ftok(3) is given different pathname arguments that have the same inode

 number:

 $ ln mykey link

 $ ls -i1 link mykey

 2233197 link

 2233197 mykey

 $./t_semget link p 1 # Generates same key as 'mykey'

 ID = 9

 Program source

 /* t_semget.c

 Licensed under GNU General Public License v2 or later.

 */ Page 5/7

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 #include <sys/stat.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 static void

 usage(const char *pname)

 {

 fprintf(stderr, "Usage: %s [-cx] pathname proj-id num-sems\n",

 pname);

 fprintf(stderr, " -c Use IPC_CREAT flag\n");

 fprintf(stderr, " -x Use IPC_EXCL flag\n");

 exit(EXIT_FAILURE);

 }

 int

 main(int argc, char *argv[])

 {

 int semid, nsems, flags, opt;

 key_t key;

 flags = 0;

 while ((opt = getopt(argc, argv, "cx")) != -1) {

 switch (opt) {

 case 'c': flags |= IPC_CREAT; break;

 case 'x': flags |= IPC_EXCL; break;

 default: usage(argv[0]);

 }

 }

 if (argc != optind + 3)

 usage(argv[0]);

 key = ftok(argv[optind], argv[optind + 1][0]);

 if (key == -1) { Page 6/7

 perror("ftok");

 exit(EXIT_FAILURE);

 }

 nsems = atoi(argv[optind + 2]);

 semid = semget(key, nsems, flags | 0600);

 if (semid == -1) {

 perror("semget");

 exit(EXIT_FAILURE);

 }

 printf("ID = %d\n", semid);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 semctl(2), semop(2), ftok(3), capabilities(7), sem_overview(7),

 sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SEMGET(2)

Page 7/7

