
Rocky Enterprise Linux 9.2 Manual Pages on command 'send.2'

$ man send.2

SEND(2) Linux Programmer's Manual SEND(2)

NAME

 send, sendto, sendmsg - send a message on a socket

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 ssize_t send(int sockfd, const void *buf, size_t len, int flags);

 ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,

 const struct sockaddr *dest_addr, socklen_t addrlen);

 ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);

DESCRIPTION

 The system calls send(), sendto(), and sendmsg() are used to transmit a

 message to another socket.

 The send() call may be used only when the socket is in a connected

 state (so that the intended recipient is known). The only difference

 between send() and write(2) is the presence of flags. With a zero

 flags argument, send() is equivalent to write(2). Also, the following

 call Page 1/7

 send(sockfd, buf, len, flags);

 is equivalent to

 sendto(sockfd, buf, len, flags, NULL, 0);

 The argument sockfd is the file descriptor of the sending socket.

 If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET)

 socket, the arguments dest_addr and addrlen are ignored (and the error

 EISCONN may be returned when they are not NULL and 0), and the error

 ENOTCONN is returned when the socket was not actually connected. Oth?

 erwise, the address of the target is given by dest_addr with addrlen

 specifying its size. For sendmsg(), the address of the target is given

 by msg.msg_name, with msg.msg_namelen specifying its size.

 For send() and sendto(), the message is found in buf and has length

 len. For sendmsg(), the message is pointed to by the elements of the

 array msg.msg_iov. The sendmsg() call also allows sending ancillary

 data (also known as control information).

 If the message is too long to pass atomically through the underlying

 protocol, the error EMSGSIZE is returned, and the message is not trans?

 mitted.

 No indication of failure to deliver is implicit in a send(). Locally

 detected errors are indicated by a return value of -1.

 When the message does not fit into the send buffer of the socket,

 send() normally blocks, unless the socket has been placed in nonblock?

 ing I/O mode. In nonblocking mode it would fail with the error EAGAIN

 or EWOULDBLOCK in this case. The select(2) call may be used to deter?

 mine when it is possible to send more data.

 The flags argument

 The flags argument is the bitwise OR of zero or more of the following

 flags.

 MSG_CONFIRM (since Linux 2.3.15)

 Tell the link layer that forward progress happened: you got a

 successful reply from the other side. If the link layer doesn't

 get this it will regularly reprobe the neighbor (e.g., via a

 unicast ARP). Valid only on SOCK_DGRAM and SOCK_RAW sockets and Page 2/7

 currently implemented only for IPv4 and IPv6. See arp(7) for

 details.

 MSG_DONTROUTE

 Don't use a gateway to send out the packet, send to hosts only

 on directly connected networks. This is usually used only by

 diagnostic or routing programs. This is defined only for proto?

 col families that route; packet sockets don't.

 MSG_DONTWAIT (since Linux 2.2)

 Enables nonblocking operation; if the operation would block, EA?

 GAIN or EWOULDBLOCK is returned. This provides similar behavior

 to setting the O_NONBLOCK flag (via the fcntl(2) F_SETFL opera?

 tion), but differs in that MSG_DONTWAIT is a per-call option,

 whereas O_NONBLOCK is a setting on the open file description

 (see open(2)), which will affect all threads in the calling

 process and as well as other processes that hold file descrip?

 tors referring to the same open file description.

 MSG_EOR (since Linux 2.2)

 Terminates a record (when this notion is supported, as for sock?

 ets of type SOCK_SEQPACKET).

 MSG_MORE (since Linux 2.4.4)

 The caller has more data to send. This flag is used with TCP

 sockets to obtain the same effect as the TCP_CORK socket option

 (see tcp(7)), with the difference that this flag can be set on a

 per-call basis.

 Since Linux 2.6, this flag is also supported for UDP sockets,

 and informs the kernel to package all of the data sent in calls

 with this flag set into a single datagram which is transmitted

 only when a call is performed that does not specify this flag.

 (See also the UDP_CORK socket option described in udp(7).)

 MSG_NOSIGNAL (since Linux 2.2)

 Don't generate a SIGPIPE signal if the peer on a stream-oriented

 socket has closed the connection. The EPIPE error is still re?

 turned. This provides similar behavior to using sigaction(2) to Page 3/7

 ignore SIGPIPE, but, whereas MSG_NOSIGNAL is a per-call feature,

 ignoring SIGPIPE sets a process attribute that affects all

 threads in the process.

 MSG_OOB

 Sends out-of-band data on sockets that support this notion

 (e.g., of type SOCK_STREAM); the underlying protocol must also

 support out-of-band data.

 sendmsg()

 The definition of the msghdr structure employed by sendmsg() is as fol?

 lows:

 struct msghdr {

 void *msg_name; /* Optional address */

 socklen_t msg_namelen; /* Size of address */

 struct iovec *msg_iov; /* Scatter/gather array */

 size_t msg_iovlen; /* # elements in msg_iov */

 void *msg_control; /* Ancillary data, see below */

 size_t msg_controllen; /* Ancillary data buffer len */

 int msg_flags; /* Flags (unused) */

 };

 The msg_name field is used on an unconnected socket to specify the tar?

 get address for a datagram. It points to a buffer containing the ad?

 dress; the msg_namelen field should be set to the size of the address.

 For a connected socket, these fields should be specified as NULL and 0,

 respectively.

 The msg_iov and msg_iovlen fields specify scatter-gather locations, as

 for writev(2).

 You may send control information (ancillary data) using the msg_control

 and msg_controllen members. The maximum control buffer length the ker?

 nel can process is limited per socket by the value in

 /proc/sys/net/core/optmem_max; see socket(7). For further information

 on the use of ancillary data in various socket domains, see unix(7) and

 ip(7).

 The msg_flags field is ignored. Page 4/7

RETURN VALUE

 On success, these calls return the number of bytes sent. On error, -1

 is returned, and errno is set appropriately.

ERRORS

 These are some standard errors generated by the socket layer. Addi?

 tional errors may be generated and returned from the underlying proto?

 col modules; see their respective manual pages.

 EACCES (For UNIX domain sockets, which are identified by pathname)

 Write permission is denied on the destination socket file, or

 search permission is denied for one of the directories the path

 prefix. (See path_resolution(7).)

 (For UDP sockets) An attempt was made to send to a net?

 work/broadcast address as though it was a unicast address.

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and the requested operation

 would block. POSIX.1-2001 allows either error to be returned

 for this case, and does not require these constants to have the

 same value, so a portable application should check for both pos?

 sibilities.

 EAGAIN (Internet domain datagram sockets) The socket referred to by

 sockfd had not previously been bound to an address and, upon at?

 tempting to bind it to an ephemeral port, it was determined that

 all port numbers in the ephemeral port range are currently in

 use. See the discussion of /proc/sys/net/ipv4/ip_lo?

 cal_port_range in ip(7).

 EALREADY

 Another Fast Open is in progress.

 EBADF sockfd is not a valid open file descriptor.

 ECONNRESET

 Connection reset by peer.

 EDESTADDRREQ

 The socket is not connection-mode, and no peer address is set.

 EFAULT An invalid user space address was specified for an argument. Page 5/7

 EINTR A signal occurred before any data was transmitted; see sig?

 nal(7).

 EINVAL Invalid argument passed.

 EISCONN

 The connection-mode socket was connected already but a recipient

 was specified. (Now either this error is returned, or the re?

 cipient specification is ignored.)

 EMSGSIZE

 The socket type requires that message be sent atomically, and

 the size of the message to be sent made this impossible.

 ENOBUFS

 The output queue for a network interface was full. This gener?

 ally indicates that the interface has stopped sending, but may

 be caused by transient congestion. (Normally, this does not oc?

 cur in Linux. Packets are just silently dropped when a device

 queue overflows.)

 ENOMEM No memory available.

 ENOTCONN

 The socket is not connected, and no target has been given.

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

 EOPNOTSUPP

 Some bit in the flags argument is inappropriate for the socket

 type.

 EPIPE The local end has been shut down on a connection oriented

 socket. In this case, the process will also receive a SIGPIPE

 unless MSG_NOSIGNAL is set.

CONFORMING TO

 4.4BSD, SVr4, POSIX.1-2001. These interfaces first appeared in 4.2BSD.

 POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags.

 POSIX.1-2008 adds a specification of MSG_NOSIGNAL. The MSG_CONFIRM

 flag is a Linux extension.

NOTES Page 6/7

 According to POSIX.1-2001, the msg_controllen field of the msghdr

 structure should be typed as socklen_t, and the msg_iovlen field should

 be typed as int, but glibc currently types both as size_t.

 See sendmmsg(2) for information about a Linux-specific system call that

 can be used to transmit multiple datagrams in a single call.

BUGS

 Linux may return EPIPE instead of ENOTCONN.

EXAMPLES

 An example of the use of sendto() is shown in getaddrinfo(3).

SEE ALSO

 fcntl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2),

 shutdown(2), socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7),

 tcp(7), udp(7), unix(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SEND(2)

Page 7/7

