FPDF Libcary

PDF generator

Y

Full credit is given to the above companies including the 0§
that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'send.2'

$ man send.2
SEND(2) Linux Programmer's Manual SEND(2)
NAME

send, sendto, sendmsg - send a message on a socket
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

ssize_t sendto(int sockfd, const void *buf, size t len, int flags,

const struct sockaddr *dest_addr, socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
DESCRIPTION

The system calls send(), sendto(), and sendmsg() are used to transmit a

message to another socket.

The send() call may be used only when the socket is in a connected

state (so that the intended recipient is known). The only difference

between send() and write(2) is the presence of flags. With a zero

flags argument, send() is equivalent to write(2). Also, the following

call Page 1/7

send(sockfd, buf, len, flags);
is equivalent to
sendto(sockfd, buf, len, flags, NULL, 0);
The argument sockfd is the file descriptor of the sending socket.
If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET)
socket, the arguments dest_addr and addrlen are ignored (and the error
EISCONN may be returned when they are not NULL and 0), and the error
ENOTCONN is returned when the socket was not actually connected. Oth?
erwise, the address of the target is given by dest_addr with addrlen
specifying its size. For sendmsg(), the address of the target is given
by msg.msg_name, with msg.msg_namelen specifying its size.
For send() and sendto(), the message is found in buf and has length
len. For sendmsg(), the message is pointed to by the elements of the
array msg.msg_iov. The sendmsg() call also allows sending ancillary
data (also known as control information).
If the message is too long to pass atomically through the underlying
protocol, the error EMSGSIZE is returned, and the message is not trans?
mitted.
No indication of failure to deliver is implicit in a send(). Locally
detected errors are indicated by a return value of -1.
When the message does not fit into the send buffer of the socket,
send() normally blocks, unless the socket has been placed in nonblock?
ing 1/0 mode. In nonblocking mode it would fail with the error EAGAIN
or EWOULDBLOCK in this case. The select(2) call may be used to deter?
mine when it is possible to send more data.
The flags argument

The flags argument is the bitwise OR of zero or more of the following
flags.
MSG_CONFIRM (since Linux 2.3.15)

Tell the link layer that forward progress happened: you got a

successful reply from the other side. If the link layer doesn't

get this it will regularly reprobe the neighbor (e.g., via a

unicast ARP). Valid only on SOCK_DGRAM and SOCK_RAW sockets and Page 2/7

currently implemented only for IPv4 and IPv6. See arp(7) for
details.

MSG_DONTROUTE
Don't use a gateway to send out the packet, send to hosts only
on directly connected networks. This is usually used only by
diagnostic or routing programs. This is defined only for proto?
col families that route; packet sockets don't.

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, EA?
GAIN or EWOULDBLOCK is returned. This provides similar behavior
to setting the O_NONBLOCK flag (via the fcntl(2) F_SETFL opera?
tion), but differs in that MSG_DONTWAIT is a per-call option,
whereas O_NONBLOCK is a setting on the open file description
(see open(2)), which will affect all threads in the calling
process and as well as other processes that hold file descrip?
tors referring to the same open file description.

MSG_EOR (since Linux 2.2)
Terminates a record (when this notion is supported, as for sock?
ets of type SOCK_SEQPACKET).

MSG_MORE (since Linux 2.4.4)
The caller has more data to send. This flag is used with TCP
sockets to obtain the same effect as the TCP_CORK socket option
(see tcp(7)), with the difference that this flag can be set on a
per-call basis.
Since Linux 2.6, this flag is also supported for UDP sockets,
and informs the kernel to package all of the data sent in calls
with this flag set into a single datagram which is transmitted
only when a call is performed that does not specify this flag.
(See also the UDP_CORK socket option described in udp(7).)

MSG_NOSIGNAL (since Linux 2.2)
Don't generate a SIGPIPE signal if the peer on a stream-oriented
socket has closed the connection. The EPIPE error is still re?

turned. This provides similar behavior to using sigaction(2) to Page 3/7

ignore SIGPIPE, but, whereas MSG_NOSIGNAL is a per-call feature,

ignoring SIGPIPE sets a process attribute that affects all

threads in the process.
MSG_OOB

Sends out-of-band data on sockets that support this notion

(e.g., of type SOCK_STREAM); the underlying protocol must also

support out-of-band data.

sendmsg()
The definition of the msghdr structure employed by sendmsg() is as fol?
lows:
struct msghdr {

void *msg_name; [* Optional address */

socklen_t msg_namelen; /* Size of address */

struct iovec *msg_iov; [* Scatter/gather array */

size t msg_iovlen; /* # elements in msg_iov */

void *msg_control; /* Ancillary data, see below */

size t msg_controllen; /* Ancillary data buffer len */

int msg_flags; /* Flags (unused) */

h

The msg_name field is used on an unconnected socket to specify the tar?
get address for a datagram. It points to a buffer containing the ad?
dress; the msg_namelen field should be set to the size of the address.
For a connected socket, these fields should be specified as NULL and 0,
respectively.
The msg_iov and msg_iovlen fields specify scatter-gather locations, as
for writev(2).
You may send control information (ancillary data) using the msg_control
and msg_controllen members. The maximum control buffer length the ker?
nel can process is limited per socket by the value in
/proc/sys/net/core/optmem_max; see socket(7). For further information
on the use of ancillary data in various socket domains, see unix(7) and
ip(7).

The msg_flags field is ignored. Page 4/7

RETURN VALUE
On success, these calls return the number of bytes sent. On error, -1
is returned, and errno is set appropriately.

ERRORS
These are some standard errors generated by the socket layer. Addi?
tional errors may be generated and returned from the underlying proto?

col modules; see their respective manual pages.

EACCES (For UNIX domain sockets, which are identified by pathname)

Write permission is denied on the destination socket file, or
search permission is denied for one of the directories the path
prefix. (See path_resolution(7).)

(For UDP sockets) An attempt was made to send to a net?
work/broadcast address as though it was a unicast address.

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the requested operation
would block. POSIX.1-2001 allows either error to be returned
for this case, and does not require these constants to have the
same value, so a portable application should check for both pos?
sibilities.

EAGAIN (Internet domain datagram sockets) The socket referred to by
sockfd had not previously been bound to an address and, upon at?
tempting to bind it to an ephemeral port, it was determined that
all port numbers in the ephemeral port range are currently in
use. See the discussion of /proc/sys/net/ipva/ip_lo?
cal_port_range in ip(7).

EALREADY
Another Fast Open is in progress.

EBADF sockfd is not a valid open file descriptor.

ECONNRESET
Connection reset by peer.

EDESTADDRREQ
The socket is not connection-mode, and no peer address is set.

EFAULT An invalid user space address was specified for an argument.

Page 5/7

EINTR A signal occurred before any data was transmitted; see sig?
nal(7).

EINVAL Invalid argument passed.

EISCONN
The connection-mode socket was connected already but a recipient
was specified. (Now either this error is returned, or the re?
cipient specification is ignored.)

EMSGSIZE
The socket type requires that message be sent atomically, and
the size of the message to be sent made this impossible.

ENOBUFS
The output queue for a network interface was full. This gener?
ally indicates that the interface has stopped sending, but may
be caused by transient congestion. (Normally, this does not oc?
cur in Linux. Packets are just silently dropped when a device
gueue overflows.)

ENOMEM No memory available.

ENOTCONN
The socket is not connected, and no target has been given.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
Some bit in the flags argument is inappropriate for the socket
type.

EPIPE The local end has been shut down on a connection oriented
socket. In this case, the process will also receive a SIGPIPE
unless MSG_NOSIGNAL is set.

CONFORMING TO

4.4BSD, SVr4, POSIX.1-2001. These interfaces first appeared in 4.2BSD.

POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags.

POSIX.1-2008 adds a specification of MSG_NOSIGNAL. The MSG_CONFIRM

flag is a Linux extension.

NOTES Page 6/7

According to POSIX.1-2001, the msg_controllen field of the msghdr
structure should be typed as socklen_t, and the msg_iovlen field should
be typed as int, but glibc currently types both as size_t.
See sendmmsg(2) for information about a Linux-specific system call that
can be used to transmit multiple datagrams in a single call.

BUGS
Linux may return EPIPE instead of ENOTCONN.

EXAMPLES
An example of the use of sendto() is shown in getaddrinfo(3).

SEE ALSO
fentl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2),
shutdown(2), socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7),
tcp(7), udp(7), unix(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SEND(2)

Page 7/7

