
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-u32.8'

$ man tc-u32.8

Universal 32bit classifier in tc(8) Linux Universal 32bit classifier in tc(8)

NAME

 u32 - universal 32bit traffic control filter

SYNOPSIS

 tc filter ... [handle HANDLE] u32 OPTION_LIST [offset OFFSET] [

 hashkey HASHKEY] [classid CLASSID] [divisor uint_value] [

 order u32_value] [ht HANDLE] [sample SELECTOR [divisor

 uint_value]] [link HANDLE] [indev ifname] [skip_hw |

 skip_sw] [help]

 HANDLE := { u12_hex_htid:[u8_hex_hash:[u12_hex_nodeid] |

 0xu32_hex_value }

 OPTION_LIST := [OPTION_LIST] OPTION

 HASHKEY := [mask u32_hex_value] [at 4*int_value]

 CLASSID := { root | none | [u16_major]:u16_minor | u32_hex_value }

 OFFSET := [plus int_value] [at 2*int_value] [mask u16_hex_value]

 [shift int_value] [eat]

 OPTION := { match SELECTOR | action ACTION }

 SELECTOR := { u32 VAL_MASK_32 | u16 VAL_MASK_16 | u8 VAL_MASK_8 | ip IP Page 1/11

 | ip6 IP6 | { tcp | udp } TCPUDP | icmp ICMP | mark VAL_MASK_32

 | ether ETHER }

 IP := { { src | dst } { default | any | all | ip_address [/ { pre?

 fixlen | netmask }] } AT | { dsfield | ihl | protocol | prece?

 dence | icmp_type | icmp_code } VAL_MASK_8 | { sport | dport }

 VAL_MASK_16 | nofrag | firstfrag | df | mf }

 IP6 := { { src | dst } { default | any | all | ip6_address [/prefixlen

] } AT | priority VAL_MASK_8 | { protocol | icmp_type |

 icmp_code } VAL_MASK_8 | flowlabel VAL_MASK_32 | { sport |

 dport } VAL_MASK_16 }

 TCPUDP := { src | dst } VAL_MASK_16

 ICMP := { type VAL_MASK_8 | code VAL_MASK_8 }

 ETHER := { src | dst } ether_address AT

 VAL_MASK_32 := u32_value u32_hex_mask [AT]

 VAL_MASK_16 := u16_value u16_hex_mask [AT]

 VAL_MASK_8 := u8_value u8_hex_mask [AT]

 AT := [at [nexthdr+] int_value]

DESCRIPTION

 The Universal/Ugly 32bit filter allows one to match arbitrary bitfields

 in the packet. Due to breaking everything down to values, masks and

 offsets, It is equally powerful and hard to use. Luckily many abstract?

 ing directives are present which allow defining rules on a higher level

 and therefore free the user from having to fiddle with bits and masks

 in many cases.

 There are two general modes of invocation: The first mode creates a new

 filter to delegate packets to different destinations. Apart from the

 obvious ones, namely classifying the packet by specifying a CLASSID or

 calling an action, one may link one filter to another one (or even a

 list of them), effectively organizing filters into a tree-like hierar?

 chy.

 Typically filter delegation is done by means of a hash table, which

 leads to the second mode of invocation: it merely serves to set up

 these hash tables. Filters can select a hash table and provide a key Page 2/11

 selector from which a hash is to be computed and used as key to lookup

 the table's bucket which contains filters for further processing. This

 is useful if a high number of filters is in use, as the overhead of

 performing the hash operation and table lookup becomes negligible in

 that case. Using hashtables with u32 basically involves the following

 pattern:

 (1) Creating a new hash table, specifying it's size using the divisor

 parameter and ideally a handle by which the table can be identi?

 fied. If the latter is not given, the kernel chooses one on it's

 own, which has to be guessed later.

 (2) Creating filters which link to the created table in (1) using the

 link parameter and defining the packet data which the kernel will

 use to calculate the hashkey.

 (3) Adding filters to buckets in the hash table from (1). In order to

 avoid having to know how exactly the kernel creates the hash key,

 there is the sample parameter, which gives sample data to hash and

 thereby define the table bucket the filter should be added to.

 In fact, even if not explicitly requested u32 creates a hash table for

 every priority a filter is being added with. The table's size is 1

 though, so it is in fact merely a linked list.

VALUES

 Options and selectors require values to be specified in a specific for?

 mat, which is often non-intuitive. Therefore the terminals in SYNOPSIS

 have been given descriptive names to indicate the required format

 and/or maximum allowed numeric value: Prefixes u32, u16 and u8 indicate

 four, two and single byte unsigned values. E.g. u16 indicates a two

 byte-sized value in range between 0 and 65535 (0xFFFF) inclusive. A

 prefix of int indicates a four byte signed value. A middle part of

 hex indicates that the value is parsed in hexadecimal format. Other?

 wise, the value's base is automatically detected, i.e. values prefixed

 with 0x are considered hexadecimal, a leading 0 indicates octal format

 and decimal format otherwise. There are some values with special for?

 matting as well: ip_address and netmask are in dotted-quad formatting Page 3/11

 as usual for IPv4 addresses. An ip6_address is specified in common,

 colon-separated hexadecimal format. Finally, prefixlen is an unsigned,

 decimal integer value in range from 0 to the address width in bits (32

 for IPv4 and 128 for IPv6).

 Sometimes values need to be dividable by a certain number. In that case

 a name of the form N*val was chosen, indicating that val must be divid?

 able by N. Or the other way around: the resulting value must be a mul?

 tiple of N.

OPTIONS

 U32 recognizes the following options:

 handle HANDLE

 The handle is used to reference a filter and therefore must be

 unique. It consists of a hash table identifier htid and optional

 hash (which identifies the hash table's bucket) and nodeid. All

 these values are parsed as unsigned, hexadecimal numbers with

 length 12bits (htid and nodeid) or 8bits (hash). Alterna?

 tively one may specify a single, 32bit long hex number which

 contains the three fields bits in concatenated form. Other than

 the fields themselves, it has to be prefixed by 0x.

 offset OFFSET

 Set an offset which defines where matches of subsequent filters

 are applied to. Therefore this option is useful only when com?

 bined with link or a combination of ht and sample. The offset

 may be given explicitly by using the plus keyword, or extracted

 from the packet data with at. It is possible to mangle the lat?

 ter using mask and/or shift keywords. By default, this offset is

 recorded but not implicitly applied. It is used only to substi?

 tute the nexthdr+ statement. Using the keyword eat though in?

 verses this behaviour: the offset is applied always, and nex?

 thdr+ will fall back to zero.

 hashkey HASHKEY

 Specify what packet data to use to calculate a hash key for

 bucket lookup. The kernel adjusts the value according to the Page 4/11

 hash table's size. For this to work, the option link must be

 given.

 classid CLASSID

 Classify matching packets into the given CLASSID, which consists

 of either 16bit major and minor numbers or a single 32bit value

 combining both.

 divisor u32_value

 Specify a modulo value. Used when creating hash tables to define

 their size or for declaring a sample to calculate hash table

 keys from. Must be a power of two with exponent not exceeding

 eight.

 order u32_value

 A value to order filters by, ascending. Conflicts with handle

 which serves the same purpose.

 sample SELECTOR

 Used together with ht to specify which bucket to add this filter

 to. This allows one to avoid having to know how exactly the ker?

 nel calculates hashes. The additional divisor defaults to 256,

 so must be given for hash tables of different size.

 link HANDLE

 Delegate matching packets to filters in a hash table. HANDLE is

 used to only specify the hash table, so only htid may be given,

 hash and nodeid have to be omitted. By default, bucket number 0

 will be used and can be overridden by the hashkey option.

 indev ifname

 Filter on the incoming interface of the packet. Obviously works

 only for forwarded traffic.

 skip_sw

 Do not process filter by software. If hardware has no offload

 support for this filter, or TC offload is not enabled for the

 interface, operation will fail.

 skip_hw

 Do not process filter by hardware. Page 5/11

 help Print a brief help text about possible options.

SELECTORS

 Basically the only real selector is u32 . All others merely provide a

 higher level syntax and are internally translated into u32 .

 u32 VAL_MASK_32

 u16 VAL_MASK_16

 u8 VAL_MASK_8

 Match packet data to a given value. The selector name defines

 the sample length to extract (32bits for u32, 16bits for u16 and

 8bits for u8). Before comparing, the sample is binary AND'ed

 with the given mask. This way uninteresting bits can be cleared

 before comparison. The position of the sample is defined by the

 offset specified in AT.

 ip IP

 ip6 IP6

 Assume packet starts with an IPv4 (ip) or IPv6 (ip6) header.

 IP/IP6 then allows one to match various header fields:

 src ADDR

 dst ADDR

 Compare Source or Destination Address fields against the

 value of ADDR. The reserved words default, any and all

 effectively match any address. Otherwise an IP address of

 the particular protocol is expected, optionally suffixed

 by a prefix length to match whole subnets. In case of

 IPv4 a netmask may also be given.

 dsfield VAL_MASK_8

 IPv4 only. Match the packet header's DSCP/ECN field. Syn?

 onyms to this are tos and precedence.

 ihl VAL_MASK_8

 IPv4 only. Match the Internet Header Length field. Note

 that the value's unit is 32bits, so to match a packet

 with 24byte header length u8_value has to be 6.

 protocol VAL_MASK_8 Page 6/11

 Match the Protocol (IPv4) or Next Header (IPv6) field

 value, e.g. 6 for TCP.

 icmp_type VAL_MASK_8

 icmp_code VAL_MASK_8

 Assume a next-header protocol of icmp or ipv6-icmp and

 match Type or Code field values. This is dangerous, as

 the code assumes minimal header size for IPv4 and lack of

 extension headers for IPv6.

 sport VAL_MASK_16

 dport VAL_MASK_16

 Match layer four source or destination ports. This is

 dangerous as well, as it assumes a suitable layer four

 protocol is present (which has Source and Destination

 Port fields right at the start of the header and 16bit in

 size). Also minimal header size for IPv4 and lack of

 IPv6 extension headers is assumed.

 nofrag

 firstfrag

 df

 mf IPv4 only, check certain flags and fragment offset val?

 ues. Match if the packet is not a fragment (nofrag), the

 first fragment of a fragmented packet (firstfrag), if

 Don't Fragment (df) or More Fragments (mf) bits are set.

 priority VAL_MASK_8

 IPv6 only. Match the header's Traffic Class field, which

 has the same purpose and semantics of IPv4's ToS field

 since RFC 3168: upper six bits are DSCP, the lower two

 ECN.

 flowlabel VAL_MASK_32

 IPv6 only. Match the Flow Label field's value. Note that

 Flow Label itself is only 20bytes long, which are the

 least significant ones here. The remaining upper 12bytes

 match Version and Traffic Class fields. Page 7/11

 tcp TCPUDP

 udp TCPUDP

 Match fields of next header of protocol TCP or UDP. The possible

 values for TCPDUP are:

 src VAL_MASK_16

 Match on Source Port field value.

 dst VALMASK_16

 Match on Destination Port field value.

 icmp ICMP

 Match fields of next header of protocol ICMP. The possible val?

 ues for ICMP are:

 type VAL_MASK_8

 Match on ICMP Type field.

 code VAL_MASK_8

 Match on ICMP Code field.

 mark VAL_MASK_32

 Match on netfilter fwmark value.

 ether ETHER

 Match on ethernet header fields. Possible values for ETHER are:

 src ether_address AT

 dst ether_address AT

 Match on source or destination ethernet address. This is

 dangerous: It assumes an ethernet header is present at

 the start of the packet. This will probably lead to unex?

 pected things if used with layer three interfaces like

 e.g. tun or ppp.

EXAMPLES

 tc filter add dev eth0 parent 999:0 prio 99 protocol ip u32 \

 match ip src 192.168.8.0/24 classid 1:1

 This attaches a filter to the qdisc identified by 999:0. It's priority

 is 99, which affects in which order multiple filters attached to the

 same parent are consulted (the lower the earlier). The filter handles

 packets of protocol type ip, and matches if the IP header's source ad? Page 8/11

 dress is within the 192.168.8.0/24 subnet. Matching packets are classi?

 fied into class 1.1. The effect of this command might be surprising at

 first glance:

 filter parent 1: protocol ip pref 99 u32

 filter parent 1: protocol ip pref 99 u32 \

 fh 800: ht divisor 1

 filter parent 1: protocol ip pref 99 u32 \

 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:1 \

 match c0a80800/ffffff00 at 12

 So parent 1: is assigned a new u32 filter, which contains a hash table

 of size 1 (as the divisor indicates). The table ID is 800. The third

 line then shows the actual filter which was added above: it sits in ta?

 ble 800 and bucket 0, classifies packets into class ID 1:1 and matches

 the upper three bytes of the four byte value at offset 12 to be

 0xc0a808, which is 192, 168 and 8.

 Now for something more complicated, namely creating a custom hash ta?

 ble:

 tc filter add dev eth0 prio 99 handle 1: u32 divisor 256

 This creates a table of size 256 with handle 1: in priority 99. The

 effect is as follows:

 filter parent 1: protocol all pref 99 u32

 filter parent 1: protocol all pref 99 u32 fh 1: ht divisor 256

 filter parent 1: protocol all pref 99 u32 fh 800: ht divisor 1

 So along with the requested hash table (handle 1:), the kernel has cre?

 ated his own table of size 1 to hold other filters of the same prior?

 ity.

 The next step is to create a filter which links to the created hash ta?

 ble:

 tc filter add dev eth0 parent 1: prio 1 u32 \

 link 1: hashkey mask 0x0000ff00 at 12 \

 match ip src 192.168.0.0/16

 The filter is given a lower priority than the hash table itself so u32

 consults it before manually traversing the hash table. The options link Page 9/11

 and hashkey determine which table and bucket to redirect to. In this

 case the hash key should be constructed out of the second byte at off?

 set 12, which corresponds to an IP packet's third byte of the source

 address field. Along with the match statement, this effectively maps

 all class C networks below 192.168.0.0/16 to different buckets of the

 hash table.

 Filters for certain subnets can be created like so:

 tc filter add dev eth0 parent 1: prio 99 u32 \

 ht 1: sample u32 0x00000800 0x0000ff00 at 12 \

 match ip src 192.168.8.0/24 classid 1:1

 The bucket is defined using the sample option: In this case, the second

 byte at offset 12 must be 0x08, exactly. In this case, the resulting

 bucket ID is obviously 8, but as soon as sample selects an amount of

 data which could exceed the divisor, one would have to know the kernel-

 internal algorithm to deduce the destination bucket. This filter's

 match statement is redundant in this case, as the entropy for the hash

 key does not exceed the table size and therefore no collisions can oc?

 cur. Otherwise it's necessary to prevent matching unwanted packets.

 Matching upper layer fields is problematic since IPv4 header length is

 variable and IPv6 supports extension headers which affect upper layer

 header offset. To overcome this, there is the possibility to specify

 nexthdr+ when giving an offset, and to make things easier there are the

 tcp and udp matches which use nexthdr+ implicitly. This offset has to

 be calculated in beforehand though, and the only way to achieve that is

 by doing it in a separate filter which then links to the filter which

 wants to use it. Here is an example of doing so:

 tc filter add dev eth0 parent 1:0 protocol ip handle 1: \

 u32 divisor 1

 tc filter add dev eth0 parent 1:0 protocol ip \

 u32 ht 1: \

 match tcp src 22 FFFF \

 classid 1:2

 tc filter add dev eth0 parent 1:0 protocol ip \ Page 10/11

 u32 ht 800: \

 match ip protocol 6 FF \

 match u16 0 1fff at 6 \

 offset at 0 mask 0f00 shift 6 \

 link 1:

 This is what is being done: In the first call, a single element sized

 hash table is created so there is a place to hold the linked to filter

 and a known handle (1:) to reference to it. The second call then adds

 the actual filter, which pushes packets with TCP source port 22 into

 class 1:2. Using ht, it is moved into the hash table created by the

 first call. The third call then does the actual magic: It matches IPv4

 packets with next layer protocol 6 (TCP), only if it's the first frag?

 ment (usually TCP sets DF bit, but if it doesn't and the packet is

 fragmented, only the first one contains the TCP header), and then sets

 the offset based on the IP header's IHL field (right-shifting by 6

 eliminates the offset of the field and at the same time converts the

 value into byte unit). Finally, using link, the hash table from first

 call is referenced which holds the filter from second call.

SEE ALSO

 tc(8),

 cls_u32.txt at http://linux-tc-notes.sourceforge.net/

iproute2 25 Sep 20Universal 32bit classifier in tc(8)

Page 11/11

