
Rocky Enterprise Linux 9.2 Manual Pages on command 'timer_gettime.2'

$ man timer_gettime.2

TIMER_SETTIME(2)           Linux Programmer's Manual          TIMER_SETTIME(2)

NAME

       timer_settime, timer_gettime - arm/disarm and fetch state of POSIX per-

       process timer

SYNOPSIS

       #include <time.h>

       int timer_settime(timer_t timerid, int flags,

                         const struct itimerspec *new_value,

                         struct itimerspec *old_value);

       int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

       Link with -lrt.

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       timer_settime(), timer_gettime(): _POSIX_C_SOURCE >= 199309L

DESCRIPTION

       timer_settime() arms or disarms the timer identified by  timerid.   The

       new_value argument is pointer to an itimerspec structure that specifies

       the new initial value and the new interval for the timer.  The  itimer?

       spec structure is defined as follows: Page 1/4



           struct timespec {

               time_t tv_sec;                /* Seconds */

               long   tv_nsec;               /* Nanoseconds */

           };

           struct itimerspec {

               struct timespec it_interval;  /* Timer interval */

               struct timespec it_value;     /* Initial expiration */

           };

       Each  of  the  substructures  of the itimerspec structure is a timespec

       structure that allows a time value  to  be  specified  in  seconds  and

       nanoseconds.   These  time  values  are measured according to the clock

       that was specified when the timer was created by timer_create(2).

       If new_value->it_value specifies a nonzero value (i.e., either subfield

       is  nonzero),  then timer_settime() arms (starts) the timer, setting it

       to initially expire at the given  time.   (If  the  timer  was  already

       armed,    then    the   previous   settings   are   overwritten.)    If

       new_value->it_value specifies a zero value (i.e.,  both  subfields  are

       zero), then the timer is disarmed.

       The  new_value->it_interval field specifies the period of the timer, in

       seconds and nanoseconds.  If this field is nonzero, then each time that

       an  armed timer expires, the timer is reloaded from the value specified

       in new_value->it_interval.  If new_value->it_interval specifies a  zero

       value,  then  the  timer  expires  just  once, at the time specified by

       it_value.

       By   default,   the    initial    expiration    time    specified    in

       new_value->it_value  is interpreted relative to the current time on the

       timer's clock at the time of the call.  This can be modified by  speci?

       fying  TIMER_ABSTIME in flags, in which case new_value->it_value is in?

       terpreted as an absolute value as measured on the timer's  clock;  that

       is, the timer will expire when the clock value reaches the value speci?

       fied by new_value->it_value.  If the specified absolute  time  has  al?

       ready passed, then the timer expires immediately, and the overrun count

       (see timer_getoverrun(2)) will be set correctly. Page 2/4



       If the value of the CLOCK_REALTIME clock is adjusted while an  absolute

       timer  based  on  that clock is armed, then the expiration of the timer

       will be appropriately  adjusted.   Adjustments  to  the  CLOCK_REALTIME

       clock have no effect on relative timers based on that clock.

       If  old_value  is  not NULL, then it points to a buffer that is used to

       return the previous interval of the timer  (in  old_value->it_interval)

       and  the  amount of time until the timer would previously have next ex?

       pired (in old_value->it_value).

       timer_gettime() returns the time until next expiration, and the  inter?

       val,  for  the  timer specified by timerid, in the buffer pointed to by

       curr_value.  The time remaining until the next timer expiration is  re?

       turned  in  curr_value->it_value;  this is always a relative value, re?

       gardless of whether the TIMER_ABSTIME flag was  used  when  arming  the

       timer.  If the value returned in curr_value->it_value is zero, then the

       timer is  currently  disarmed.   The  timer  interval  is  returned  in

       curr_value->it_interval.   If  the value returned in curr_value->it_in?

       terval is zero, then this is a "one-shot" timer.

RETURN VALUE

       On success, timer_settime() and timer_gettime() return 0.  On error, -1

       is returned, and errno is set to indicate the error.

ERRORS

       These functions may fail with the following errors:

       EFAULT new_value, old_value, or curr_value is not a valid pointer.

       EINVAL timerid is invalid.

       timer_settime() may fail with the following errors:

       EINVAL new_value.it_value is negative; or new_value.it_value.tv_nsec is

              negative or greater than 999,999,999.

VERSIONS

       These system calls are available since Linux 2.6.

CONFORMING TO

       POSIX.1-2001, POSIX.1-2008.

EXAMPLES

       See timer_create(2). Page 3/4



SEE ALSO

       timer_create(2), timer_getoverrun(2), time(7)

COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-06-09                  TIMER_SETTIME(2)

Page 4/4


