
Rocky Enterprise Linux 9.2 Manual Pages on command 'write.2'

$ man write.2

WRITE(2) Linux Programmer's Manual WRITE(2)

NAME

 write - write to a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

 write() writes up to count bytes from the buffer starting at buf to the

 file referred to by the file descriptor fd.

 The number of bytes written may be less than count if, for example,

 there is insufficient space on the underlying physical medium, or the

 RLIMIT_FSIZE resource limit is encountered (see setrlimit(2)), or the

 call was interrupted by a signal handler after having written less than

 count bytes. (See also pipe(7).)

 For a seekable file (i.e., one to which lseek(2) may be applied, for

 example, a regular file) writing takes place at the file offset, and

 the file offset is incremented by the number of bytes actually written.

 If the file was open(2)ed with O_APPEND, the file offset is first set Page 1/5

 to the end of the file before writing. The adjustment of the file off?

 set and the write operation are performed as an atomic step.

 POSIX requires that a read(2) that can be proved to occur after a

 write() has returned will return the new data. Note that not all

 filesystems are POSIX conforming.

 According to POSIX.1, if count is greater than SSIZE_MAX, the result is

 implementation-defined; see NOTES for the upper limit on Linux.

RETURN VALUE

 On success, the number of bytes written is returned. On error, -1 is

 returned, and errno is set to indicate the cause of the error.

 Note that a successful write() may transfer fewer than count bytes.

 Such partial writes can occur for various reasons; for example, because

 there was insufficient space on the disk device to write all of the re?

 quested bytes, or because a blocked write() to a socket, pipe, or simi?

 lar was interrupted by a signal handler after it had transferred some,

 but before it had transferred all of the requested bytes. In the event

 of a partial write, the caller can make another write() call to trans?

 fer the remaining bytes. The subsequent call will either transfer fur?

 ther bytes or may result in an error (e.g., if the disk is now full).

 If count is zero and fd refers to a regular file, then write() may re?

 turn a failure status if one of the errors below is detected. If no

 errors are detected, or error detection is not performed, 0 will be re?

 turned without causing any other effect. If count is zero and fd

 refers to a file other than a regular file, the results are not speci?

 fied.

ERRORS

 EAGAIN The file descriptor fd refers to a file other than a socket and

 has been marked nonblocking (O_NONBLOCK), and the write would

 block. See open(2) for further details on the O_NONBLOCK flag.

 EAGAIN or EWOULDBLOCK

 The file descriptor fd refers to a socket and has been marked

 nonblocking (O_NONBLOCK), and the write would block.

 POSIX.1-2001 allows either error to be returned for this case, Page 2/5

 and does not require these constants to have the same value, so

 a portable application should check for both possibilities.

 EBADF fd is not a valid file descriptor or is not open for writing.

 EDESTADDRREQ

 fd refers to a datagram socket for which a peer address has not

 been set using connect(2).

 EDQUOT The user's quota of disk blocks on the filesystem containing the

 file referred to by fd has been exhausted.

 EFAULT buf is outside your accessible address space.

 EFBIG An attempt was made to write a file that exceeds the implementa?

 tion-defined maximum file size or the process's file size limit,

 or to write at a position past the maximum allowed offset.

 EINTR The call was interrupted by a signal before any data was writ?

 ten; see signal(7).

 EINVAL fd is attached to an object which is unsuitable for writing; or

 the file was opened with the O_DIRECT flag, and either the ad?

 dress specified in buf, the value specified in count, or the

 file offset is not suitably aligned.

 EIO A low-level I/O error occurred while modifying the inode. This

 error may relate to the write-back of data written by an earlier

 write(), which may have been issued to a different file descrip?

 tor on the same file. Since Linux 4.13, errors from write-back

 come with a promise that they may be reported by subsequent.

 write() requests, and will be reported by a subsequent fsync(2)

 (whether or not they were also reported by write()). An alter?

 nate cause of EIO on networked filesystems is when an advisory

 lock had been taken out on the file descriptor and this lock has

 been lost. See the Lost locks section of fcntl(2) for further

 details.

 ENOSPC The device containing the file referred to by fd has no room for

 the data.

 EPERM The operation was prevented by a file seal; see fcntl(2).

 EPIPE fd is connected to a pipe or socket whose reading end is closed. Page 3/5

 When this happens the writing process will also receive a SIG?

 PIPE signal. (Thus, the write return value is seen only if the

 program catches, blocks or ignores this signal.)

 Other errors may occur, depending on the object connected to fd.

CONFORMING TO

 SVr4, 4.3BSD, POSIX.1-2001.

 Under SVr4 a write may be interrupted and return EINTR at any point,

 not just before any data is written.

NOTES

 The types size_t and ssize_t are, respectively, unsigned and signed in?

 teger data types specified by POSIX.1.

 A successful return from write() does not make any guarantee that data

 has been committed to disk. On some filesystems, including NFS, it

 does not even guarantee that space has successfully been reserved for

 the data. In this case, some errors might be delayed until a future

 write(), fsync(2), or even close(2). The only way to be sure is to

 call fsync(2) after you are done writing all your data.

 If a write() is interrupted by a signal handler before any bytes are

 written, then the call fails with the error EINTR; if it is interrupted

 after at least one byte has been written, the call succeeds, and re?

 turns the number of bytes written.

 On Linux, write() (and similar system calls) will transfer at most

 0x7ffff000 (2,147,479,552) bytes, returning the number of bytes actu?

 ally transferred. (This is true on both 32-bit and 64-bit systems.)

 An error return value while performing write() using direct I/O does

 not mean the entire write has failed. Partial data may be written and

 the data at the file offset on which the write() was attempted should

 be considered inconsistent.

BUGS

 According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions

 with Regular File Operations"):

 All of the following functions shall be atomic with respect to each

 other in the effects specified in POSIX.1-2008 when they operate on Page 4/5

 regular files or symbolic links: ...

 Among the APIs subsequently listed are write() and writev(2). And

 among the effects that should be atomic across threads (and processes)

 are updates of the file offset. However, on Linux before version 3.14,

 this was not the case: if two processes that share an open file de?

 scription (see open(2)) perform a write() (or writev(2)) at the same

 time, then the I/O operations were not atomic with respect updating the

 file offset, with the result that the blocks of data output by the two

 processes might (incorrectly) overlap. This problem was fixed in Linux

 3.14.

SEE ALSO

 close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2),

 read(2), select(2), writev(2), fwrite(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-10-10 WRITE(2)

Page 5/5

