Where Online Learning is simpler!
The C and C++ Include Header Files
/usr/include/tgmath.h
$ cat -n /usr/include/tgmath.h 1 /* Copyright (C) 1997-2024 Free Software Foundation, Inc. 2 This file is part of the GNU C Library. 3 4 The GNU C Library is free software; you can redistribute it and/or 5 modify it under the terms of the GNU Lesser General Public 6 License as published by the Free Software Foundation; either 7 version 2.1 of the License, or (at your option) any later version. 8 9 The GNU C Library is distributed in the hope that it will be useful, 10 but WITHOUT ANY WARRANTY; without even the implied warranty of 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 Lesser General Public License for more details. 13 14 You should have received a copy of the GNU Lesser General Public 15 License along with the GNU C Library; if not, see 16
. */ 17 18 /* 19 * ISO C99 Standard: 7.22 Type-generic math
20 */ 21 22 #ifndef _TGMATH_H 23 #define _TGMATH_H 1 24 25 #define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION 26 #include
27 28 /* Include the needed headers. */ 29 #include
30 #include
31 #include
32 33 34 /* There are two variant implementations of type-generic macros in 35 this file: one for GCC 8 and later, using __builtin_tgmath and 36 where each macro expands each of its arguments only once, and one 37 for older GCC, using other compiler extensions but with macros 38 expanding their arguments many times (so resulting in exponential 39 blowup of the size of expansions when calls to such macros are 40 nested inside arguments to such macros). Because of a long series 41 of defect fixes made after the initial release of TS 18661-1, GCC 42 versions before GCC 13 have __builtin_tgmath semantics that, when 43 integer arguments are passed to narrowing macros returning 44 _Float32x, or non-narrowing macros with at least two generic 45 arguments, do not always correspond to the C2X semantics, so more 46 complicated macro definitions are also used in some cases for 47 versions from GCC 8 to GCC 12. */ 48 49 #define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0) 50 #define __HAVE_BUILTIN_TGMATH_C2X __GNUC_PREREQ (13, 0) 51 52 #if __GNUC_PREREQ (2, 7) 53 54 /* Certain cases of narrowing macros only need to call a single 55 function so cannot use __builtin_tgmath and do not need any 56 complicated logic. */ 57 # if __HAVE_FLOAT128X 58 # error "Unsupported _Float128x type for
." 59 # endif 60 # if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128) \ 61 || (__HAVE_FLOAT128 && !__HAVE_FLOAT64X)) 62 # error "Unsupported combination of types for
." 63 # endif 64 # define __TGMATH_1_NARROW_D(F, X) \ 65 (F ## l (X)) 66 # define __TGMATH_2_NARROW_D(F, X, Y) \ 67 (F ## l (X, Y)) 68 # define __TGMATH_3_NARROW_D(F, X, Y, Z) \ 69 (F ## l (X, Y, Z)) 70 # define __TGMATH_1_NARROW_F64X(F, X) \ 71 (F ## f128 (X)) 72 # define __TGMATH_2_NARROW_F64X(F, X, Y) \ 73 (F ## f128 (X, Y)) 74 # define __TGMATH_3_NARROW_F64X(F, X, Y, Z) \ 75 (F ## f128 (X, Y, Z)) 76 # if !__HAVE_FLOAT128 77 # define __TGMATH_1_NARROW_F32X(F, X) \ 78 (F ## f64 (X)) 79 # define __TGMATH_2_NARROW_F32X(F, X, Y) \ 80 (F ## f64 (X, Y)) 81 # define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \ 82 (F ## f64 (X, Y, Z)) 83 # endif 84 85 # if __HAVE_BUILTIN_TGMATH 86 87 # if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT) 88 # define __TG_F16_ARG(X) X ## f16, 89 # else 90 # define __TG_F16_ARG(X) 91 # endif 92 # if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT) 93 # define __TG_F32_ARG(X) X ## f32, 94 # else 95 # define __TG_F32_ARG(X) 96 # endif 97 # if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT) 98 # define __TG_F64_ARG(X) X ## f64, 99 # else 100 # define __TG_F64_ARG(X) 101 # endif 102 # if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) 103 # define __TG_F128_ARG(X) X ## f128, 104 # else 105 # define __TG_F128_ARG(X) 106 # endif 107 # if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT) 108 # define __TG_F32X_ARG(X) X ## f32x, 109 # else 110 # define __TG_F32X_ARG(X) 111 # endif 112 # if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT) 113 # define __TG_F64X_ARG(X) X ## f64x, 114 # else 115 # define __TG_F64X_ARG(X) 116 # endif 117 # if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT) 118 # define __TG_F128X_ARG(X) X ## f128x, 119 # else 120 # define __TG_F128X_ARG(X) 121 # endif 122 123 # define __TGMATH_FUNCS(X) X ## f, X, X ## l, \ 124 __TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \ 125 __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) 126 # define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C) 127 # define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X)) 128 # define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y)) 129 # define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y)) 130 # define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \ 131 (X), (Y), (Z)) 132 # define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X)) 133 # define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \ 134 (X), (Y)) 135 136 # define __TGMATH_NARROW_FUNCS_F(X) X, X ## l, 137 # define __TGMATH_NARROW_FUNCS_F16(X) \ 138 __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \ 139 __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) 140 # define __TGMATH_NARROW_FUNCS_F32(X) \ 141 __TG_F64_ARG (X) __TG_F128_ARG (X) \ 142 __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) 143 # define __TGMATH_NARROW_FUNCS_F64(X) \ 144 __TG_F128_ARG (X) \ 145 __TG_F64X_ARG (X) __TG_F128X_ARG (X) 146 # define __TGMATH_NARROW_FUNCS_F32X(X) \ 147 __TG_F64X_ARG (X) __TG_F128X_ARG (X) \ 148 __TG_F64_ARG (X) __TG_F128_ARG (X) 149 150 # define __TGMATH_1_NARROW_F(F, X) \ 151 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X)) 152 # define __TGMATH_2_NARROW_F(F, X, Y) \ 153 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y)) 154 # define __TGMATH_3_NARROW_F(F, X, Y, Z) \ 155 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y), (Z)) 156 # define __TGMATH_1_NARROW_F16(F, X) \ 157 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X)) 158 # define __TGMATH_2_NARROW_F16(F, X, Y) \ 159 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y)) 160 # define __TGMATH_3_NARROW_F16(F, X, Y, Z) \ 161 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y), (Z)) 162 # define __TGMATH_1_NARROW_F32(F, X) \ 163 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X)) 164 # define __TGMATH_2_NARROW_F32(F, X, Y) \ 165 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y)) 166 # define __TGMATH_3_NARROW_F32(F, X, Y, Z) \ 167 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y), (Z)) 168 # define __TGMATH_1_NARROW_F64(F, X) \ 169 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X)) 170 # define __TGMATH_2_NARROW_F64(F, X, Y) \ 171 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y)) 172 # define __TGMATH_3_NARROW_F64(F, X, Y, Z) \ 173 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y), (Z)) 174 # if __HAVE_FLOAT128 && __HAVE_BUILTIN_TGMATH_C2X 175 # define __TGMATH_1_NARROW_F32X(F, X) \ 176 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X)) 177 # define __TGMATH_2_NARROW_F32X(F, X, Y) \ 178 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y)) 179 # define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \ 180 __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y), (Z)) 181 # endif 182 183 # endif 184 185 # if !__HAVE_BUILTIN_TGMATH_C2X 186 # ifdef __NO_LONG_DOUBLE_MATH 187 # define __tgml(fct) fct 188 # else 189 # define __tgml(fct) fct ## l 190 # endif 191 192 /* __floating_type expands to 1 if TYPE is a floating type (including 193 complex floating types), 0 if TYPE is an integer type (including 194 complex integer types). __real_integer_type expands to 1 if TYPE 195 is a real integer type. __complex_integer_type expands to 1 if 196 TYPE is a complex integer type. All these macros expand to integer 197 constant expressions. All these macros can assume their argument 198 has an arithmetic type (not vector, decimal floating-point or 199 fixed-point), valid to pass to tgmath.h macros. */ 200 # if __GNUC_PREREQ (3, 1) 201 /* __builtin_classify_type expands to an integer constant expression 202 in GCC 3.1 and later. Default conversions applied to the argument 203 of __builtin_classify_type mean it always returns 1 for real 204 integer types rather than ever returning different values for 205 character, boolean or enumerated types. */ 206 # define __floating_type(type) \ 207 (__builtin_classify_type (__real__ ((type) 0)) == 8) 208 # define __real_integer_type(type) \ 209 (__builtin_classify_type ((type) 0) == 1) 210 # define __complex_integer_type(type) \ 211 (__builtin_classify_type ((type) 0) == 9 \ 212 && __builtin_classify_type (__real__ ((type) 0)) == 1) 213 # else 214 /* GCC versions predating __builtin_classify_type are also looser on 215 what counts as an integer constant expression. */ 216 # define __floating_type(type) (((type) 1.25) != 1) 217 # define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1) 218 # define __complex_integer_type(type) \ 219 (((type) (1.25 + _Complex_I)) == (1 + _Complex_I)) 220 # endif 221 222 /* Whether an expression (of arithmetic type) has a real type. */ 223 # define __expr_is_real(E) (__builtin_classify_type (E) != 9) 224 225 /* Type T1 if E is 1, type T2 is E is 0. */ 226 # define __tgmath_type_if(T1, T2, E) \ 227 __typeof__ (*(0 ? (__typeof__ (0 ? (T2 *) 0 : (void *) (E))) 0 \ 228 : (__typeof__ (0 ? (T1 *) 0 : (void *) (!(E)))) 0)) 229 230 /* The tgmath real type for T, where E is 0 if T is an integer type 231 and 1 for a floating type. If T has a complex type, it is 232 unspecified whether the return type is real or complex (but it has 233 the correct corresponding real type). */ 234 # define __tgmath_real_type_sub(T, E) \ 235 __tgmath_type_if (T, double, E) 236 237 /* The tgmath real type of EXPR. */ 238 # define __tgmath_real_type(expr) \ 239 __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ 240 __floating_type (__typeof__ (+(expr)))) 241 242 /* The tgmath complex type for T, where E1 is 1 if T has a floating 243 type and 0 otherwise, E2 is 1 if T has a real integer type and 0 244 otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */ 245 # define __tgmath_complex_type_sub(T, E1, E2, E3) \ 246 __typeof__ (*(0 \ 247 ? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \ 248 : (__typeof__ (0 \ 249 ? (__typeof__ (0 \ 250 ? (double *) 0 \ 251 : (void *) (!(E2)))) 0 \ 252 : (__typeof__ (0 \ 253 ? (_Complex double *) 0 \ 254 : (void *) (!(E3)))) 0)) 0)) 255 256 /* The tgmath complex type of EXPR. */ 257 # define __tgmath_complex_type(expr) \ 258 __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ 259 __floating_type (__typeof__ (+(expr))), \ 260 __real_integer_type (__typeof__ (+(expr))), \ 261 __complex_integer_type (__typeof__ (+(expr)))) 262 263 /* The tgmath real type of EXPR1 combined with EXPR2, without handling 264 the C2X rule of interpreting integer arguments as _Float32x if any 265 argument is _FloatNx. */ 266 # define __tgmath_real_type2_base(expr1, expr2) \ 267 __typeof ((__tgmath_real_type (expr1)) 0 + (__tgmath_real_type (expr2)) 0) 268 269 /* The tgmath complex type of EXPR1 combined with EXPR2, without 270 handling the C2X rule of interpreting integer arguments as 271 _Float32x if any argument is _FloatNx. */ 272 # define __tgmath_complex_type2_base(expr1, expr2) \ 273 __typeof ((__tgmath_complex_type (expr1)) 0 \ 274 + (__tgmath_complex_type (expr2)) 0) 275 276 /* The tgmath real type of EXPR1 combined with EXPR2 and EXPR3, 277 without handling the C2X rule of interpreting integer arguments as 278 _Float32x if any argument is _FloatNx. */ 279 # define __tgmath_real_type3_base(expr1, expr2, expr3) \ 280 __typeof ((__tgmath_real_type (expr1)) 0 \ 281 + (__tgmath_real_type (expr2)) 0 \ 282 + (__tgmath_real_type (expr3)) 0) 283 284 /* The tgmath real or complex type of EXPR1 combined with EXPR2 (and 285 EXPR3 if applicable). */ 286 # if __HAVE_FLOATN_NOT_TYPEDEF 287 # define __tgmath_real_type2(expr1, expr2) \ 288 __tgmath_type_if (_Float32x, __tgmath_real_type2_base (expr1, expr2), \ 289 _Generic ((expr1) + (expr2), _Float32x: 1, default: 0)) 290 # define __tgmath_complex_type2(expr1, expr2) \ 291 __tgmath_type_if (_Float32x, \ 292 __tgmath_type_if (_Complex _Float32x, \ 293 __tgmath_complex_type2_base (expr1, \ 294 expr2), \ 295 _Generic ((expr1) + (expr2), \ 296 _Complex _Float32x: 1, \ 297 default: 0)), \ 298 _Generic ((expr1) + (expr2), _Float32x: 1, default: 0)) 299 # define __tgmath_real_type3(expr1, expr2, expr3) \ 300 __tgmath_type_if (_Float32x, \ 301 __tgmath_real_type3_base (expr1, expr2, expr3), \ 302 _Generic ((expr1) + (expr2) + (expr3), \ 303 _Float32x: 1, default: 0)) 304 # else 305 # define __tgmath_real_type2(expr1, expr2) \ 306 __tgmath_real_type2_base (expr1, expr2) 307 # define __tgmath_complex_type2(expr1, expr2) \ 308 __tgmath_complex_type2_base (expr1, expr2) 309 # define __tgmath_real_type3(expr1, expr2, expr3) \ 310 __tgmath_real_type3_base (expr1, expr2, expr3) 311 # endif 312 313 # if (__HAVE_DISTINCT_FLOAT16 \ 314 || __HAVE_DISTINCT_FLOAT32 \ 315 || __HAVE_DISTINCT_FLOAT64 \ 316 || __HAVE_DISTINCT_FLOAT32X \ 317 || __HAVE_DISTINCT_FLOAT64X \ 318 || __HAVE_DISTINCT_FLOAT128X) 319 # error "Unsupported _FloatN or _FloatNx types for
." 320 # endif 321 322 /* Expand to text that checks if ARG_COMB has type _Float128, and if 323 so calls the appropriately suffixed FCT (which may include a cast), 324 or FCT and CFCT for complex functions, with arguments ARG_CALL. 325 __TGMATH_F128LD (only used in the __HAVE_FLOAT64X_LONG_DOUBLE case, 326 for narrowing macros) handles long double the same as 327 _Float128. */ 328 # if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) 329 # if (!__HAVE_FLOAT64X \ 330 || __HAVE_FLOAT64X_LONG_DOUBLE \ 331 || !__HAVE_FLOATN_NOT_TYPEDEF) 332 # define __TGMATH_F128(arg_comb, fct, arg_call) \ 333 __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ 334 ? fct ## f128 arg_call : 335 # define __TGMATH_F128LD(arg_comb, fct, arg_call) \ 336 (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ 337 || __builtin_types_compatible_p (__typeof (+(arg_comb)), long double)) \ 338 ? fct ## f128 arg_call : 339 # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ 340 __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ 341 ? (__expr_is_real (arg_comb) \ 342 ? fct ## f128 arg_call \ 343 : cfct ## f128 arg_call) : 344 # else 345 /* _Float64x is a distinct type at the C language level, which must be 346 handled like _Float128. */ 347 # define __TGMATH_F128(arg_comb, fct, arg_call) \ 348 (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ 349 || __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \ 350 ? fct ## f128 arg_call : 351 # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ 352 (__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ 353 || __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \ 354 _Float64x)) \ 355 ? (__expr_is_real (arg_comb) \ 356 ? fct ## f128 arg_call \ 357 : cfct ## f128 arg_call) : 358 # endif 359 # else 360 # define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */ 361 # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */ 362 # endif 363 364 # endif /* !__HAVE_BUILTIN_TGMATH_C2X. */ 365 366 /* We have two kinds of generic macros: to support functions which are 367 only defined on real valued parameters and those which are defined 368 for complex functions as well. */ 369 # if __HAVE_BUILTIN_TGMATH 370 371 # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) 372 # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) 373 # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ 374 __TGMATH_2 (Fct, (Val1), (Val2)) 375 # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ 376 __TGMATH_2STD (Fct, (Val1), (Val2)) 377 # if __HAVE_BUILTIN_TGMATH_C2X 378 # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ 379 __TGMATH_2 (Fct, (Val1), (Val2)) 380 # endif 381 # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ 382 __TGMATH_2STD (Fct, (Val1), (Val2)) 383 # if __HAVE_BUILTIN_TGMATH_C2X 384 # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ 385 __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) 386 # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ 387 __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) 388 # endif 389 # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ 390 __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) 391 # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ 392 __TGMATH_1C (Fct, Cfct, (Val)) 393 # define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val)) 394 # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ 395 __TGMATH_1C (Fct, Cfct, (Val)) 396 # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ 397 __TGMATH_1 (Cfct, (Val)) 398 # if __HAVE_BUILTIN_TGMATH_C2X 399 # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ 400 __TGMATH_2C (Fct, Cfct, (Val1), (Val2)) 401 # endif 402 403 # endif 404 405 # if !__HAVE_BUILTIN_TGMATH 406 # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ 407 (__extension__ ((sizeof (+(Val)) == sizeof (double) \ 408 || __builtin_classify_type (Val) != 8) \ 409 ? (__tgmath_real_type (Val)) Fct (Val) \ 410 : (sizeof (+(Val)) == sizeof (float)) \ 411 ? (__tgmath_real_type (Val)) Fct##f (Val) \ 412 : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \ 413 (Val)) \ 414 (__tgmath_real_type (Val)) __tgml(Fct) (Val))) 415 416 # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \ 417 (__extension__ ((sizeof (+(Val)) == sizeof (double) \ 418 || __builtin_classify_type (Val) != 8) \ 419 ? Fct (Val) \ 420 : (sizeof (+(Val)) == sizeof (float)) \ 421 ? Fct##f (Val) \ 422 : __TGMATH_F128 ((Val), Fct, (Val)) \ 423 __tgml(Fct) (Val))) 424 425 # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ 426 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ 427 || __builtin_classify_type (Val1) != 8) \ 428 ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ 429 : (sizeof (+(Val1)) == sizeof (float)) \ 430 ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ 431 : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \ 432 (Val1, Val2)) \ 433 (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) 434 435 # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ 436 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ 437 || __builtin_classify_type (Val1) != 8) \ 438 ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ 439 : (sizeof (+(Val1)) == sizeof (float)) \ 440 ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ 441 : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) 442 # endif 443 444 # if !__HAVE_BUILTIN_TGMATH_C2X 445 # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ 446 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ 447 && __builtin_classify_type ((Val1) + (Val2)) == 8) \ 448 ? __TGMATH_F128 ((Val1) + (Val2), \ 449 (__tgmath_real_type2 (Val1, Val2)) Fct, \ 450 (Val1, Val2)) \ 451 (__tgmath_real_type2 (Val1, Val2)) \ 452 __tgml(Fct) (Val1, Val2) \ 453 : (sizeof (+(Val1)) == sizeof (double) \ 454 || sizeof (+(Val2)) == sizeof (double) \ 455 || __builtin_classify_type (Val1) != 8 \ 456 || __builtin_classify_type (Val2) != 8) \ 457 ? (__tgmath_real_type2 (Val1, Val2)) \ 458 Fct (Val1, Val2) \ 459 : (__tgmath_real_type2 (Val1, Val2)) \ 460 Fct##f (Val1, Val2))) 461 # endif 462 463 # if !__HAVE_BUILTIN_TGMATH 464 # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ 465 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ 466 && __builtin_classify_type ((Val1) + (Val2)) == 8) \ 467 ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 468 + (__tgmath_real_type (Val2)) 0)) \ 469 __tgml(Fct) (Val1, Val2) \ 470 : (sizeof (+(Val1)) == sizeof (double) \ 471 || sizeof (+(Val2)) == sizeof (double) \ 472 || __builtin_classify_type (Val1) != 8 \ 473 || __builtin_classify_type (Val2) != 8) \ 474 ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 475 + (__tgmath_real_type (Val2)) 0)) \ 476 Fct (Val1, Val2) \ 477 : (__typeof ((__tgmath_real_type (Val1)) 0 \ 478 + (__tgmath_real_type (Val2)) 0)) \ 479 Fct##f (Val1, Val2))) 480 # endif 481 482 # if !__HAVE_BUILTIN_TGMATH_C2X 483 # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ 484 (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ 485 && __builtin_classify_type ((Val1) + (Val2)) == 8) \ 486 ? __TGMATH_F128 ((Val1) + (Val2), \ 487 (__tgmath_real_type2 (Val1, Val2)) Fct, \ 488 (Val1, Val2, Val3)) \ 489 (__tgmath_real_type2 (Val1, Val2)) \ 490 __tgml(Fct) (Val1, Val2, Val3) \ 491 : (sizeof (+(Val1)) == sizeof (double) \ 492 || sizeof (+(Val2)) == sizeof (double) \ 493 || __builtin_classify_type (Val1) != 8 \ 494 || __builtin_classify_type (Val2) != 8) \ 495 ? (__tgmath_real_type2 (Val1, Val2)) \ 496 Fct (Val1, Val2, Val3) \ 497 : (__tgmath_real_type2 (Val1, Val2)) \ 498 Fct##f (Val1, Val2, Val3))) 499 500 # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ 501 (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \ 502 && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \ 503 == 8) \ 504 ? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \ 505 (__tgmath_real_type3 (Val1, Val2, \ 506 Val3)) Fct, \ 507 (Val1, Val2, Val3)) \ 508 (__tgmath_real_type3 (Val1, Val2, Val3)) \ 509 __tgml(Fct) (Val1, Val2, Val3) \ 510 : (sizeof (+(Val1)) == sizeof (double) \ 511 || sizeof (+(Val2)) == sizeof (double) \ 512 || sizeof (+(Val3)) == sizeof (double) \ 513 || __builtin_classify_type (Val1) != 8 \ 514 || __builtin_classify_type (Val2) != 8 \ 515 || __builtin_classify_type (Val3) != 8) \ 516 ? (__tgmath_real_type3 (Val1, Val2, Val3)) \ 517 Fct (Val1, Val2, Val3) \ 518 : (__tgmath_real_type3 (Val1, Val2, Val3)) \ 519 Fct##f (Val1, Val2, Val3))) 520 # endif 521 522 # if !__HAVE_BUILTIN_TGMATH 523 # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ 524 (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ 525 || __builtin_classify_type (Val1) != 8) \ 526 ? Fct (Val1, Val2, Val3) \ 527 : (sizeof (+(Val1)) == sizeof (float)) \ 528 ? Fct##f (Val1, Val2, Val3) \ 529 : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \ 530 __tgml(Fct) (Val1, Val2, Val3))) 531 532 /* XXX This definition has to be changed as soon as the compiler understands 533 the imaginary keyword. */ 534 # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ 535 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ 536 || __builtin_classify_type (__real__ (Val)) != 8) \ 537 ? (__expr_is_real (Val) \ 538 ? (__tgmath_complex_type (Val)) Fct (Val) \ 539 : (__tgmath_complex_type (Val)) Cfct (Val)) \ 540 : (sizeof (+__real__ (Val)) == sizeof (float)) \ 541 ? (__expr_is_real (Val) \ 542 ? (__tgmath_complex_type (Val)) Fct##f (Val) \ 543 : (__tgmath_complex_type (Val)) Cfct##f (Val)) \ 544 : __TGMATH_CF128 ((Val), \ 545 (__tgmath_complex_type (Val)) Fct, \ 546 (__tgmath_complex_type (Val)) Cfct, \ 547 (Val)) \ 548 (__expr_is_real (Val) \ 549 ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \ 550 : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val)))) 551 552 # define __TGMATH_UNARY_IMAG(Val, Cfct) \ 553 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ 554 || __builtin_classify_type (__real__ (Val)) != 8) \ 555 ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ 556 + _Complex_I)) Cfct (Val) \ 557 : (sizeof (+__real__ (Val)) == sizeof (float)) \ 558 ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ 559 + _Complex_I)) Cfct##f (Val) \ 560 : __TGMATH_F128 (__real__ (Val), \ 561 (__typeof__ \ 562 ((__tgmath_real_type (Val)) 0 \ 563 + _Complex_I)) Cfct, (Val)) \ 564 (__typeof__ ((__tgmath_real_type (Val)) 0 \ 565 + _Complex_I)) __tgml(Cfct) (Val))) 566 567 /* XXX This definition has to be changed as soon as the compiler understands 568 the imaginary keyword. */ 569 # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ 570 (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ 571 || __builtin_classify_type (__real__ (Val)) != 8) \ 572 ? (__expr_is_real (Val) \ 573 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 574 Fct (Val) \ 575 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 576 Cfct (Val)) \ 577 : (sizeof (+__real__ (Val)) == sizeof (float)) \ 578 ? (__expr_is_real (Val) \ 579 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 580 Fct##f (Val) \ 581 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 582 Cfct##f (Val)) \ 583 : __TGMATH_CF128 ((Val), \ 584 (__typeof__ \ 585 (__real__ \ 586 (__tgmath_real_type (Val)) 0)) Fct, \ 587 (__typeof__ \ 588 (__real__ \ 589 (__tgmath_real_type (Val)) 0)) Cfct, \ 590 (Val)) \ 591 (__expr_is_real (Val) \ 592 ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ 593 __tgml(Fct) (Val) \ 594 : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ 595 __tgml(Cfct) (Val)))) 596 # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ 597 __TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct) 598 # endif 599 600 # if !__HAVE_BUILTIN_TGMATH_C2X 601 /* XXX This definition has to be changed as soon as the compiler understands 602 the imaginary keyword. */ 603 # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ 604 (__extension__ ((sizeof (__real__ (Val1) \ 605 + __real__ (Val2)) > sizeof (double) \ 606 && __builtin_classify_type (__real__ (Val1) \ 607 + __real__ (Val2)) == 8) \ 608 ? __TGMATH_CF128 ((Val1) + (Val2), \ 609 (__tgmath_complex_type2 (Val1, Val2)) \ 610 Fct, \ 611 (__tgmath_complex_type2 (Val1, Val2)) \ 612 Cfct, \ 613 (Val1, Val2)) \ 614 (__expr_is_real ((Val1) + (Val2)) \ 615 ? (__tgmath_complex_type2 (Val1, Val2)) \ 616 __tgml(Fct) (Val1, Val2) \ 617 : (__tgmath_complex_type2 (Val1, Val2)) \ 618 __tgml(Cfct) (Val1, Val2)) \ 619 : (sizeof (+__real__ (Val1)) == sizeof (double) \ 620 || sizeof (+__real__ (Val2)) == sizeof (double) \ 621 || __builtin_classify_type (__real__ (Val1)) != 8 \ 622 || __builtin_classify_type (__real__ (Val2)) != 8) \ 623 ? (__expr_is_real ((Val1) + (Val2)) \ 624 ? (__tgmath_complex_type2 (Val1, Val2)) \ 625 Fct (Val1, Val2) \ 626 : (__tgmath_complex_type2 (Val1, Val2)) \ 627 Cfct (Val1, Val2)) \ 628 : (__expr_is_real ((Val1) + (Val2)) \ 629 ? (__tgmath_complex_type2 (Val1, Val2)) \ 630 Fct##f (Val1, Val2) \ 631 : (__tgmath_complex_type2 (Val1, Val2)) \ 632 Cfct##f (Val1, Val2)))) 633 # endif 634 635 # if !__HAVE_BUILTIN_TGMATH 636 # define __TGMATH_1_NARROW_F(F, X) \ 637 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (double) \ 638 ? F ## l (X) \ 639 : F (X))) 640 # define __TGMATH_2_NARROW_F(F, X, Y) \ 641 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 642 + (__tgmath_real_type (Y)) 0) > sizeof (double) \ 643 ? F ## l (X, Y) \ 644 : F (X, Y))) 645 # define __TGMATH_3_NARROW_F(F, X, Y, Z) \ 646 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 647 + (__tgmath_real_type (Y)) 0 \ 648 + (__tgmath_real_type (Z)) 0) > sizeof (double) \ 649 ? F ## l (X, Y, Z) \ 650 : F (X, Y, Z))) 651 # endif 652 /* In most cases, these narrowing macro definitions based on sizeof 653 ensure that the function called has the right argument format, as 654 for other
macros for compilers before GCC 8, but may not 655 have exactly the argument type (among the types with that format) 656 specified in the standard logic. 657 658 In the case of macros for _Float32x return type, when _Float64x 659 exists, _Float64 arguments should result in the *f64 function being 660 called while _Float32x, float and double arguments should result in 661 the *f64x function being called (and integer arguments are 662 considered to have type _Float32x if any argument has type 663 _FloatNx, or double otherwise). These cases cannot be 664 distinguished using sizeof (or at all if the types are typedefs 665 rather than different types, in which case we err on the side of 666 using the wider type if unsure). */ 667 # if !__HAVE_BUILTIN_TGMATH_C2X 668 # if __HAVE_FLOATN_NOT_TYPEDEF 669 # define __TGMATH_NARROW_F32X_USE_F64X(X) \ 670 !__builtin_types_compatible_p (__typeof (+(X)), _Float64) 671 # else 672 # define __TGMATH_NARROW_F32X_USE_F64X(X) \ 673 (__builtin_types_compatible_p (__typeof (+(X)), double) \ 674 || __builtin_types_compatible_p (__typeof (+(X)), float) \ 675 || !__floating_type (__typeof (+(X)))) 676 # endif 677 # endif 678 # if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128 679 # if !__HAVE_BUILTIN_TGMATH 680 # define __TGMATH_1_NARROW_F32(F, X) \ 681 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \ 682 ? __TGMATH_F128LD ((X), F, (X)) \ 683 F ## f64x (X) \ 684 : F ## f64 (X))) 685 # define __TGMATH_2_NARROW_F32(F, X, Y) \ 686 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 687 + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ 688 ? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \ 689 F ## f64x (X, Y) \ 690 : F ## f64 (X, Y))) 691 # define __TGMATH_3_NARROW_F32(F, X, Y, Z) \ 692 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 693 + (__tgmath_real_type (Y)) 0 \ 694 + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \ 695 ? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \ 696 F ## f64x (X, Y, Z) \ 697 : F ## f64 (X, Y, Z))) 698 # define __TGMATH_1_NARROW_F64(F, X) \ 699 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \ 700 ? __TGMATH_F128LD ((X), F, (X)) \ 701 F ## f64x (X) \ 702 : F ## f128 (X))) 703 # define __TGMATH_2_NARROW_F64(F, X, Y) \ 704 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 705 + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ 706 ? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \ 707 F ## f64x (X, Y) \ 708 : F ## f128 (X, Y))) 709 # define __TGMATH_3_NARROW_F64(F, X, Y, Z) \ 710 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 711 + (__tgmath_real_type (Y)) 0 \ 712 + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \ 713 ? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \ 714 F ## f64x (X, Y, Z) \ 715 : F ## f128 (X, Y, Z))) 716 # endif 717 # if !__HAVE_BUILTIN_TGMATH_C2X 718 # define __TGMATH_1_NARROW_F32X(F, X) \ 719 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \ 720 || __TGMATH_NARROW_F32X_USE_F64X (X) \ 721 ? __TGMATH_F128 ((X), F, (X)) \ 722 F ## f64x (X) \ 723 : F ## f64 (X))) 724 # define __TGMATH_2_NARROW_F32X(F, X, Y) \ 725 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 726 + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ 727 || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \ 728 ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \ 729 F ## f64x (X, Y) \ 730 : F ## f64 (X, Y))) 731 # define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \ 732 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 733 + (__tgmath_real_type (Y)) 0 \ 734 + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \ 735 || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \ 736 ? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z)) \ 737 F ## f64x (X, Y, Z) \ 738 : F ## f64 (X, Y, Z))) 739 # endif 740 # elif __HAVE_FLOAT128 741 # if !__HAVE_BUILTIN_TGMATH 742 # define __TGMATH_1_NARROW_F32(F, X) \ 743 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \ 744 ? F ## f128 (X) \ 745 : F ## f64 (X))) 746 # define __TGMATH_2_NARROW_F32(F, X, Y) \ 747 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 748 + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \ 749 ? F ## f128 (X, Y) \ 750 : F ## f64 (X, Y))) 751 # define __TGMATH_3_NARROW_F32(F, X, Y, Z) \ 752 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 753 + (__tgmath_real_type (Y)) 0 \ 754 + (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \ 755 ? F ## f128 (X, Y, Z) \ 756 : F ## f64 (X, Y, Z))) 757 # define __TGMATH_1_NARROW_F64(F, X) \ 758 (F ## f128 (X)) 759 # define __TGMATH_2_NARROW_F64(F, X, Y) \ 760 (F ## f128 (X, Y)) 761 # define __TGMATH_3_NARROW_F64(F, X, Y, Z) \ 762 (F ## f128 (X, Y, Z)) 763 # endif 764 # if !__HAVE_BUILTIN_TGMATH_C2X 765 # define __TGMATH_1_NARROW_F32X(F, X) \ 766 (__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float32x) \ 767 || __TGMATH_NARROW_F32X_USE_F64X (X) \ 768 ? F ## f64x (X) \ 769 : F ## f64 (X))) 770 # define __TGMATH_2_NARROW_F32X(F, X, Y) \ 771 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 772 + (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \ 773 || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \ 774 ? F ## f64x (X, Y) \ 775 : F ## f64 (X, Y))) 776 # define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \ 777 (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \ 778 + (__tgmath_real_type (Y)) 0 \ 779 + (__tgmath_real_type (Z)) 0) > sizeof (_Float32x) \ 780 || __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \ 781 ? F ## f64x (X, Y, Z) \ 782 : F ## f64 (X, Y, Z))) 783 # endif 784 # else 785 # if !__HAVE_BUILTIN_TGMATH 786 # define __TGMATH_1_NARROW_F32(F, X) \ 787 (F ## f64 (X)) 788 # define __TGMATH_2_NARROW_F32(F, X, Y) \ 789 (F ## f64 (X, Y)) 790 # define __TGMATH_3_NARROW_F32(F, X, Y, Z) \ 791 (F ## f64 (X, Y, Z)) 792 # endif 793 # endif 794 #else 795 # error "Unsupported compiler; you cannot use
" 796 #endif 797 798 799 /* Unary functions defined for real and complex values. */ 800 801 802 /* Trigonometric functions. */ 803 804 /* Arc cosine of X. */ 805 #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) 806 /* Arc sine of X. */ 807 #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) 808 /* Arc tangent of X. */ 809 #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) 810 /* Arc tangent of Y/X. */ 811 #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) 812 813 /* Cosine of X. */ 814 #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) 815 /* Sine of X. */ 816 #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) 817 /* Tangent of X. */ 818 #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) 819 820 821 /* Hyperbolic functions. */ 822 823 /* Hyperbolic arc cosine of X. */ 824 #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) 825 /* Hyperbolic arc sine of X. */ 826 #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) 827 /* Hyperbolic arc tangent of X. */ 828 #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) 829 830 /* Hyperbolic cosine of X. */ 831 #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) 832 /* Hyperbolic sine of X. */ 833 #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) 834 /* Hyperbolic tangent of X. */ 835 #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) 836 837 838 /* Exponential and logarithmic functions. */ 839 840 /* Exponential function of X. */ 841 #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) 842 843 /* Break VALUE into a normalized fraction and an integral power of 2. */ 844 #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) 845 846 /* X times (two to the EXP power). */ 847 #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) 848 849 /* Natural logarithm of X. */ 850 #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) 851 852 /* Base-ten logarithm of X. */ 853 #ifdef __USE_GNU 854 # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10) 855 #else 856 # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) 857 #endif 858 859 /* Return exp(X) - 1. */ 860 #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) 861 862 /* Return log(1 + X). */ 863 #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) 864 865 /* Return the base 2 signed integral exponent of X. */ 866 #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) 867 868 /* Compute base-2 exponential of X. */ 869 #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) 870 871 /* Compute base-2 logarithm of X. */ 872 #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) 873 874 #if __GLIBC_USE (IEC_60559_FUNCS_EXT_C2X) 875 /* Compute exponent to base ten. */ 876 #define exp10(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp10) 877 #endif 878 879 880 /* Power functions. */ 881 882 /* Return X to the Y power. */ 883 #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) 884 885 /* Return the square root of X. */ 886 #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) 887 888 /* Return `sqrt(X*X + Y*Y)'. */ 889 #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) 890 891 /* Return the cube root of X. */ 892 #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) 893 894 895 /* Nearest integer, absolute value, and remainder functions. */ 896 897 /* Smallest integral value not less than X. */ 898 #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) 899 900 /* Absolute value of X. */ 901 #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs) 902 903 /* Largest integer not greater than X. */ 904 #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) 905 906 /* Floating-point modulo remainder of X/Y. */ 907 #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) 908 909 /* Round X to integral valuein floating-point format using current 910 rounding direction, but do not raise inexact exception. */ 911 #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) 912 913 /* Round X to nearest integral value, rounding halfway cases away from 914 zero. */ 915 #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) 916 917 /* Round X to the integral value in floating-point format nearest but 918 not larger in magnitude. */ 919 #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) 920 921 /* Compute remainder of X and Y and put in *QUO a value with sign of x/y 922 and magnitude congruent `mod 2^n' to the magnitude of the integral 923 quotient x/y, with n >= 3. */ 924 #define remquo(Val1, Val2, Val3) \ 925 __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) 926 927 /* Round X to nearest integral value according to current rounding 928 direction. */ 929 #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint) 930 #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint) 931 932 /* Round X to nearest integral value, rounding halfway cases away from 933 zero. */ 934 #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround) 935 #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround) 936 937 938 /* Return X with its signed changed to Y's. */ 939 #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) 940 941 /* Error and gamma functions. */ 942 #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) 943 #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) 944 #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) 945 #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) 946 947 948 /* Return the integer nearest X in the direction of the 949 prevailing rounding mode. */ 950 #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) 951 952 #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) 953 /* Return X - epsilon. */ 954 # define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown) 955 /* Return X + epsilon. */ 956 # define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup) 957 #endif 958 959 /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ 960 #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) 961 #define nexttoward(Val1, Val2) \ 962 __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward) 963 964 /* Return the remainder of integer division X / Y with infinite precision. */ 965 #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) 966 967 /* Return X times (2 to the Nth power). */ 968 #ifdef __USE_MISC 969 # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb) 970 #endif 971 972 /* Return X times (2 to the Nth power). */ 973 #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) 974 975 /* Return X times (2 to the Nth power). */ 976 #define scalbln(Val1, Val2) \ 977 __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) 978 979 /* Return the binary exponent of X, which must be nonzero. */ 980 #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb) 981 982 983 /* Return positive difference between X and Y. */ 984 #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) 985 986 #if __GLIBC_USE (ISOC2X) && !defined __USE_GNU 987 /* Return maximum numeric value from X and Y. */ 988 # define fmax(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmax) 989 990 /* Return minimum numeric value from X and Y. */ 991 # define fmin(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmin) 992 #else 993 /* Return maximum numeric value from X and Y. */ 994 # define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) 995 996 /* Return minimum numeric value from X and Y. */ 997 # define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) 998 #endif 999 1000 1001 /* Multiply-add function computed as a ternary operation. */ 1002 #define fma(Val1, Val2, Val3) \ 1003 __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) 1004 1005 #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) 1006 /* Round X to nearest integer value, rounding halfway cases to even. */ 1007 # define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven) 1008 1009 # define fromfp(Val1, Val2, Val3) \ 1010 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp) 1011 1012 # define ufromfp(Val1, Val2, Val3) \ 1013 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp) 1014 1015 # define fromfpx(Val1, Val2, Val3) \ 1016 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx) 1017 1018 # define ufromfpx(Val1, Val2, Val3) \ 1019 __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx) 1020 1021 /* Like ilogb, but returning long int. */ 1022 # define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb) 1023 #endif 1024 1025 #if __GLIBC_USE (IEC_60559_BFP_EXT) 1026 /* Return value with maximum magnitude. */ 1027 # define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag) 1028 1029 /* Return value with minimum magnitude. */ 1030 # define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag) 1031 #endif 1032 1033 #if __GLIBC_USE (ISOC2X) 1034 /* Return maximum value from X and Y. */ 1035 # define fmaximum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum) 1036 1037 /* Return minimum value from X and Y. */ 1038 # define fminimum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum) 1039 1040 /* Return maximum numeric value from X and Y. */ 1041 # define fmaximum_num(Val1, Val2) \ 1042 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_num) 1043 1044 /* Return minimum numeric value from X and Y. */ 1045 # define fminimum_num(Val1, Val2) \ 1046 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_num) 1047 1048 /* Return value with maximum magnitude. */ 1049 # define fmaximum_mag(Val1, Val2) \ 1050 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag) 1051 1052 /* Return value with minimum magnitude. */ 1053 # define fminimum_mag(Val1, Val2) \ 1054 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag) 1055 1056 /* Return numeric value with maximum magnitude. */ 1057 # define fmaximum_mag_num(Val1, Val2) \ 1058 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag_num) 1059 1060 /* Return numeric value with minimum magnitude. */ 1061 # define fminimum_mag_num(Val1, Val2) \ 1062 __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag_num) 1063 #endif 1064 1065 1066 /* Absolute value, conjugates, and projection. */ 1067 1068 /* Argument value of Z. */ 1069 #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg) 1070 1071 /* Complex conjugate of Z. */ 1072 #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj) 1073 1074 /* Projection of Z onto the Riemann sphere. */ 1075 #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj) 1076 1077 1078 /* Decomposing complex values. */ 1079 1080 /* Imaginary part of Z. */ 1081 #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag) 1082 1083 /* Real part of Z. */ 1084 #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal) 1085 1086 1087 /* Narrowing functions. */ 1088 1089 #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) 1090 1091 /* Add. */ 1092 # define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2) 1093 # define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2) 1094 1095 /* Divide. */ 1096 # define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2) 1097 # define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2) 1098 1099 /* Multiply. */ 1100 # define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2) 1101 # define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2) 1102 1103 /* Subtract. */ 1104 # define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2) 1105 # define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2) 1106 1107 /* Square root. */ 1108 # define fsqrt(Val) __TGMATH_1_NARROW_F (fsqrt, Val) 1109 # define dsqrt(Val) __TGMATH_1_NARROW_D (dsqrt, Val) 1110 1111 /* Fused multiply-add. */ 1112 # define ffma(Val1, Val2, Val3) __TGMATH_3_NARROW_F (ffma, Val1, Val2, Val3) 1113 # define dfma(Val1, Val2, Val3) __TGMATH_3_NARROW_D (dfma, Val1, Val2, Val3) 1114 1115 #endif 1116 1117 #if __GLIBC_USE (IEC_60559_TYPES_EXT) 1118 1119 # if __HAVE_FLOAT16 1120 # define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2) 1121 # define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2) 1122 # define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2) 1123 # define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2) 1124 # define f16sqrt(Val) __TGMATH_1_NARROW_F16 (f16sqrt, Val) 1125 # define f16fma(Val1, Val2, Val3) \ 1126 __TGMATH_3_NARROW_F16 (f16fma, Val1, Val2, Val3) 1127 # endif 1128 1129 # if __HAVE_FLOAT32 1130 # define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2) 1131 # define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2) 1132 # define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2) 1133 # define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2) 1134 # define f32sqrt(Val) __TGMATH_1_NARROW_F32 (f32sqrt, Val) 1135 # define f32fma(Val1, Val2, Val3) \ 1136 __TGMATH_3_NARROW_F32 (f32fma, Val1, Val2, Val3) 1137 # endif 1138 1139 # if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128) 1140 # define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2) 1141 # define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2) 1142 # define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2) 1143 # define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2) 1144 # define f64sqrt(Val) __TGMATH_1_NARROW_F64 (f64sqrt, Val) 1145 # define f64fma(Val1, Val2, Val3) \ 1146 __TGMATH_3_NARROW_F64 (f64fma, Val1, Val2, Val3) 1147 # endif 1148 1149 # if __HAVE_FLOAT32X 1150 # define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2) 1151 # define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2) 1152 # define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2) 1153 # define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2) 1154 # define f32xsqrt(Val) __TGMATH_1_NARROW_F32X (f32xsqrt, Val) 1155 # define f32xfma(Val1, Val2, Val3) \ 1156 __TGMATH_3_NARROW_F32X (f32xfma, Val1, Val2, Val3) 1157 # endif 1158 1159 # if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128) 1160 # define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2) 1161 # define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2) 1162 # define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2) 1163 # define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2) 1164 # define f64xsqrt(Val) __TGMATH_1_NARROW_F64X (f64xsqrt, Val) 1165 # define f64xfma(Val1, Val2, Val3) \ 1166 __TGMATH_3_NARROW_F64X (f64xfma, Val1, Val2, Val3) 1167 # endif 1168 1169 #endif 1170 1171 #endif /* tgmath.h */
Contact us
|
About us
|
Term of use
|
Copyright © 2000-2025 MyWebUniversity.com ™