
Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

NAME
Capture::Tiny − Capture STDOUT and STDERR from Perl, XS or external programs

VERSION
version 0.48

SYNOPSIS
use Capture::Tiny ':all';

capture from external command

($stdout, $stderr, $exit) = capture {

system($cmd, @args);

};

capture from arbitrary code (Perl or external)

($stdout, $stderr, @result) = capture {

your code here

};

capture partial or merged output

$stdout = capture_stdout { ... };

$stderr = capture_stderr { ... };

$merged = capture_merged { ... };

tee output

($stdout, $stderr) = tee {

your code here

};

$stdout = tee_stdout { ... };

$stderr = tee_stderr { ... };

$merged = tee_merged { ... };

DESCRIPTION
Capture::Tiny provides a simple, portable way to capture almost anything sent to STDOUT or STDERR,

regardless of whether it comes from Perl, from XS code or from an external program. Optionally, output

can be teed so that it is captured while being passed through to the original filehandles. Yes, it even works

on Windows (usually). Stop guessing which of a dozen capturing modules to use in any particular situation

and just use this one.

USAGE
The following functions are available. None are exported by default.

capture

($stdout, $stderr, @result) = capture \&code;

$stdout = capture \&code;

The capture function takes a code reference and returns what is sent to STDOUT and STDERR as well as

any return values from the code reference. In scalar context, it returns only STDOUT. If no output was

received for a filehandle, it returns an empty string for that filehandle. Regardless of calling context, all

output is captured — nothing is passed to the existing filehandles.

It is prototyped to take a subroutine reference as an argument. Thus, it can be called in block form:

perl v5.26.1 2018-04-22 1

Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

($stdout, $stderr) = capture {

your code here ...

};

Note that the coderef is evaluated in list context. If you wish to force scalar context on the return value, you

must use the scalar keyword.

($stdout, $stderr, $count) = capture {

my @list = qw/one two three/;

return scalar @list; # $count will be 3

};

Also note that within the coderef, the @_ variable will be empty. So don’t use arguments from a

surrounding subroutine without copying them to an array first:

sub wont_work {

my ($stdout, $stderr) = capture { do_stuff(@_) }; # WRONG

...

}

sub will_work {

my @args = @_;

my ($stdout, $stderr) = capture { do_stuff(@args) }; # RIGHT

...

}

Captures are normally done to an anonymous temporary filehandle. To capture via a named file (e.g. to

externally monitor a long-running capture), provide custom filehandles as a trailing list of option pairs:

my $out_fh = IO::File−>new("out.txt", "w+");

my $err_fh = IO::File−>new("out.txt", "w+");

capture { ... } stdout => $out_fh, stderr => $err_fh;

The filehandles must be read/write and seekable. Modifying the files or filehandles during a capture

operation will give unpredictable results. Existing IO layers on them may be changed by the capture.

When called in void context, capture saves memory and time by not reading back from the capture

handles.

capture_stdout

($stdout, @result) = capture_stdout \&code;

$stdout = capture_stdout \&code;

The capture_stdout function works just like capture except only STDOUT is captured. STDERR is

not captured.

capture_stderr

($stderr, @result) = capture_stderr \&code;

$stderr = capture_stderr \&code;

The capture_stderr function works just like capture except only STDERR is captured. STDOUT is

not captured.

capture_merged

($merged, @result) = capture_merged \&code;

$merged = capture_merged \&code;

The capture_merged function works just like capture except STDOUT and STDERR are merged.

(Technically, STDERR is redirected to the same capturing handle as STDOUT before executing the

function.)

Caution: STDOUT and STDERR output in the merged result are not guaranteed to be properly ordered due to

buffering.

perl v5.26.1 2018-04-22 2

Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

tee

($stdout, $stderr, @result) = tee \&code;

$stdout = tee \&code;

The tee function works just like capture, except that output is captured as well as passed on to the

original STDOUT and STDERR.

When called in void context, tee saves memory and time by not reading back from the capture handles,

except when the original STDOUT OR STDERR were tied or opened to a scalar handle.

tee_stdout

($stdout, @result) = tee_stdout \&code;

$stdout = tee_stdout \&code;

The tee_stdout function works just like tee except only STDOUT is teed. STDERR is not teed (output

goes to STDERR as usual).

tee_stderr

($stderr, @result) = tee_stderr \&code;

$stderr = tee_stderr \&code;

The tee_stderr function works just like tee except only STDERR is teed. STDOUT is not teed (output

goes to STDOUT as usual).

tee_merged

($merged, @result) = tee_merged \&code;

$merged = tee_merged \&code;

The tee_merged function works just like capture_merged except that output is captured as well as

passed on to STDOUT.

Caution: STDOUT and STDERR output in the merged result are not guaranteed to be properly ordered due to

buffering.

LIMITATIONS
Portability

Portability is a goal, not a guarantee. tee requires fork, except on Windows where system(1, @cmd)

is used instead. Not tested on any particularly esoteric platforms yet. See the CPAN Testers Matrix

<http://matrix.cpantesters.org/?dist=Capture-Tiny> for test result by platform.

PerlIO layers

Capture::Tiny does its best to preserve PerlIO layers such as ’:utf8’ or ’:crlf’ when capturing (only for Perl

5.8.1+) . Layers should be applied to STDOUT or STDERR before the call to capture or tee. This may

not work for tied filehandles (see below).

Modifying filehandles before capturing

Generally speaking, you should do little or no manipulation of the standard IO filehandles prior to using

Capture::Tiny. In particular, closing, reopening, localizing or tying standard filehandles prior to capture

may cause a variety of unexpected, undesirable and/or unreliable behaviors, as described below.

Capture::Tiny does its best to compensate for these situations, but the results may not be what you desire.

Closed filehandles

Capture::Tiny will work even if STDIN, STDOUT or STDERR have been previously closed. However, since

they will be reopened to capture or tee output, any code within the captured block that depends on finding

them closed will, of course, not find them to be closed. If they started closed, Capture::Tiny will close them

again when the capture block finishes.

Note that this reopening will happen even for STDIN or a filehandle not being captured to ensure that the

filehandle used for capture is not opened to file descriptor 0, as this causes problems on various platforms.

Prior to Perl 5.12, closed STDIN combined with PERL_UNICODE=D leaks filehandles and also breaks

tee() for undiagnosed reasons. So don’t do that.

Localized filehandles

perl v5.26.1 2018-04-22 3

Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

If code localizes any of Perl’s standard filehandles before capturing, the capture will affect the localized

filehandles and not the original ones. External system calls are not affected by localizing a filehandle in

Perl and will continue to send output to the original filehandles (which will thus not be captured).

Scalar filehandles

If STDOUT or STDERR are reopened to scalar filehandles prior to the call to capture or tee, then

Capture::Tiny will override the output filehandle for the duration of the capture or tee call and then, for

tee, send captured output to the output filehandle after the capture is complete. (Requires Perl 5.8)

Capture::Tiny attempts to preserve the semantics of STDIN opened to a scalar reference, but note that

external processes will not be able to read from such a handle. Capture::Tiny tries to ensure that external

processes will read from the null device instead, but this is not guaranteed.

Tied output filehandles

If STDOUT or STDERR are tied prior to the call to capture or tee, then Capture::Tiny will attempt to

override the tie for the duration of the capture or tee call and then send captured output to the tied

filehandle after the capture is complete. (Requires Perl 5.8)

Capture::Tiny may not succeed resending UTF−8 encoded data to a tied STDOUT or STDERR filehandle.

Characters may appear as bytes. If the tied filehandle is based on Tie::StdHandle, then Capture::Tiny will

attempt to determine appropriate layers like :utf8 from the underlying filehandle and do the right thing.

Tied input filehandle

Capture::Tiny attempts to preserve the semantics of tied STDIN, but this requires Perl 5.8 and is not entirely

predictable. External processes will not be able to read from such a handle.

Unless having STDIN tied is crucial, it may be safest to localize STDIN when capturing:

my ($out, $err) = do { local *STDIN; capture { ... } };

Modifying filehandles during a capture

Attempting to modify STDIN, STDOUT or STDERR during capture or tee is almost certainly going to

cause problems. Don’t do that.

Forking inside a capture

Forks aren’t portable. The behavior of filehandles during a fork is even less so. If Capture::Tiny detects

that a fork has occurred within a capture, it will shortcut in the child process and return empty strings for

captures. Other problems may occur in the child or parent, as well. Forking in a capture block is not

recommended.

Using threads

Filehandles are global. Mixing up I/O and captures in different threads without coordination is going to

cause problems. Besides, threads are officially discouraged.

Dropping privileges during a capture

If you drop privileges during a capture, temporary files created to facilitate the capture may not be cleaned

up afterwards.

No support for Perl 5.8.0

It’s just too buggy when it comes to layers and UTF−8. Perl 5.8.1 or later is recommended.

Limited support for Perl 5.6

Perl 5.6 predates PerlIO. UTF−8 data may not be captured correctly.

ENVIRONMENT
PERL_CAPTURE_TINY_TIMEOUT

Capture::Tiny uses subprocesses internally for tee. By default, Capture::Tiny will timeout with an error if

such subprocesses are not ready to receive data within 30 seconds (or whatever is the value of

$Capture::Tiny::TIMEOUT). An alternate timeout may be specified by setting the

PERL_CAPTURE_TINY_TIMEOUT environment variable. Setting it to zero will disable timeouts. NOTE,

perl v5.26.1 2018-04-22 4

Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

this does not timeout the code reference being captured — this only prevents Capture::Tiny itself from

hanging your process waiting for its child processes to be ready to proceed.

SEE ALSO
This module was inspired by IO::CaptureOutput, which provides similar functionality without the ability to

tee output and with more complicated code and API. IO::CaptureOutput does not handle layers or most of

the unusual cases described in the ‘‘Limitations’’ section and I no longer recommend it.

There are many other CPAN modules that provide some sort of output capture, albeit with various

limitations that make them appropriate only in particular circumstances. I’m probably missing some. The

long list is provided to show why I felt Capture::Tiny was necessary.

• IO::Capture

• IO::Capture::Extended

• IO::CaptureOutput

• IPC::Capture

• IPC::Cmd

• IPC::Open2

• IPC::Open3

• IPC::Open3::Simple

• IPC::Open3::Utils

• IPC::Run

• IPC::Run::SafeHandles

• IPC::Run::Simple

• IPC::Run3

• IPC::System::Simple

• Tee

• IO::Tee

• File::Tee

• Filter::Handle

• Tie::STDERR

• Tie::STDOUT

• Test::Output

SUPPORT
Bugs / Feature Requests

Please report any bugs or feature requests through the issue tracker at

<https://github.com/dagolden/Capture−Tiny/issues>. You will be notified automatically of any progress on

your issue.

Source Code

This is open source software. The code repository is available for public review and contribution under the

terms of the license.

<https://github.com/dagolden/Capture−Tiny>

git clone https://github.com/dagolden/Capture−Tiny.git

AUTHOR
David Golden <dagolden@cpan.org>

perl v5.26.1 2018-04-22 5

Capture::Tiny(3pm) User Contributed Perl Documentation Capture::Tiny(3pm)

CONTRIBUTORS
• Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>

• David E. Wheeler <david@justatheory.com>

• fecundf <not.com+github@gmail.com>

• Graham Knop <haarg@haarg.org>

• Peter Rabbitson <ribasushi@cpan.org>

COPYRIGHT AND LICENSE
This software is Copyright (c) 2009 by David Golden.

This is free software, licensed under:

The Apache License, Version 2.0, January 2004

perl v5.26.1 2018-04-22 6

