
Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

NAME
Class::Accessor − Automated accessor generation

SYNOPSIS
package Foo;
use base qw(Class::Accessor);
Foo−>follow_best_practice;
Foo−>mk_accessors(qw(name role salary));

or if you prefer a Moose−like interface...

package Foo;
use Class::Accessor "antlers";
has name => (is => "rw", isa => "Str");
has role => (is => "rw", isa => "Str");
has salary => (is => "rw", isa => "Num");

Meanwhile, in a nearby piece of code!
Class::Accessor provides new().
my $mp = Foo−>new({ name => "Marty", role => "JAPH" });

my $job = $mp−>role; # gets $mp−>{role}
$mp−>salary(400000); # sets $mp−>{salary} = 400000 # I wish

like my @info = @{$mp}{qw(name role)}
my @info = $mp−>get(qw(name role));

$mp−>{salary} = 400000
$mp−>set('salary', 400000);

DESCRIPTION
This module automagically generates accessors/mutators for your class.

Most of the time, writing accessors is an exercise in cutting and pasting. You usually wind up with a series

of methods like this:

sub name {
my $self = shift;
if(@_) {

$self−>{name} = $_[0];
}
return $self−>{name};

}

sub salary {
my $self = shift;
if(@_) {

$self−>{salary} = $_[0];
}
return $self−>{salary};

}

etc...

One for each piece of data in your object. While some will be unique, doing value checks and special

storage tricks, most will simply be exercises in repetition. Not only is it Bad Style to have a bunch of

repetitious code, but it’s also simply not lazy, which is the real tragedy.

perl v5.26.1 2017-10-24 1

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

If you make your module a subclass of Class::Accessor and declare your accessor fields with

mk_accessors() then you’ll find yourself with a set of automatically generated accessors which can even be

customized!

The basic set up is very simple:

package Foo;
use base qw(Class::Accessor);
Foo−>mk_accessors(qw(far bar car));

Done. Foo now has simple far(), bar() and car() accessors defined.

Alternatively, if you want to follow Damian’s best practice guidelines you can use:

package Foo;
use base qw(Class::Accessor);
Foo−>follow_best_practice;
Foo−>mk_accessors(qw(far bar car));

Note: you must call follow_best_practice before calling mk_accessors.

Moose-like

By popular demand we now hav e a simple Moose-like interface. You can now do:

package Foo;
use Class::Accessor "antlers";
has far => (is => "rw");
has bar => (is => "rw");
has car => (is => "rw");

Currently only the is attribute is supported.

CONSTRUCTOR
Class::Accessor provides a basic constructor, new. It generates a hash-based object and can be called as

either a class method or an object method.

new

my $obj = Foo−>new;
my $obj = $other_obj−>new;

my $obj = Foo−>new(\%fields);
my $obj = $other_obj−>new(\%fields);

It takes an optional %fields hash which is used to initialize the object (handy if you use read-only

accessors). The fields of the hash correspond to the names of your accessors, so...

package Foo;
use base qw(Class::Accessor);
Foo−>mk_accessors('foo');

my $obj = Foo−>new({ foo => 42 });
print $obj−>foo; # 42

however %fields can contain anything, new() will shove them all into your object.

MAKING ACCESSORS
follow_best_practice

In Damian’s Perl Best Practices book he recommends separate get and set methods with the prefix set_ and

get_ to make it explicit what you intend to do. If you want to create those accessor methods instead of the

default ones, call:

__PACKAGE_ _−>follow_best_practice

before you call any of the accessor-making methods.

perl v5.26.1 2017-10-24 2

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

accessor_name_for / mutator_name_for

You may have your own crazy ideas for the names of the accessors, so you can make those happen by

overriding accessor_name_for and mutator_name_for in your subclass. (I copied that idea from

Class::DBI.)

mk_accessors

__PACKAGE_ _−>mk_accessors(@fields);

This creates accessor/mutator methods for each named field given in @fields. Foreach field in

@fields it will generate two accessors. One called ‘‘field()’’ and the other called ‘‘_field_accessor()’’.

For example:

Generates foo(), _foo_accessor(), bar() and _bar_accessor().
__PACKAGE_ _−>mk_accessors(qw(foo bar));

See ‘‘Overriding autogenerated accessors’’ in CAVEATS AND TRICKS for details.

mk_ro_accessors

__PACKAGE_ _−>mk_ro_accessors(@read_only_fields);

Same as mk_accessors() except it will generate read-only accessors (ie. true accessors). If you attempt to

set a value with these accessors it will throw an exception. It only uses get() and not set().

package Foo;
use base qw(Class::Accessor);
Foo−>mk_ro_accessors(qw(foo bar));

Let's assume we have an object $foo of class Foo...
print $foo−>foo; # ok, prints whatever the value of $foo−>{foo} is
$foo−>foo(42); # BOOM! Naughty you.

mk_wo_accessors

__PACKAGE_ _−>mk_wo_accessors(@write_only_fields);

Same as mk_accessors() except it will generate write-only accessors (ie. mutators). If you attempt to read a

value with these accessors it will throw an exception. It only uses set() and not get().

NOTE I’m not entirely sure why this is useful, but I’m sure someone will need it. If you’ve found a use, let

me know. Right now it’s here for orthogonality and because it’s easy to implement.

package Foo;
use base qw(Class::Accessor);
Foo−>mk_wo_accessors(qw(foo bar));

Let's assume we have an object $foo of class Foo...
$foo−>foo(42); # OK. Sets $self−>{foo} = 42
print $foo−>foo; # BOOM! Can't read from this accessor.

Moose!
If you prefer a Moose-like interface to create accessors, you can use has by importing this module like

this:

use Class::Accessor "antlers";

or

use Class::Accessor "moose−like";

Then you can declare accessors like this:

has alpha => (is => "rw", isa => "Str");
has beta => (is => "ro", isa => "Str");
has gamma => (is => "wo", isa => "Str");

Currently only the is attribute is supported. And our is also supports the ‘‘wo’’ value to make a write-

perl v5.26.1 2017-10-24 3

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

only accessor.

If you are using the Moose-like interface then you should use the extends rather than tweaking your

@ISA directly. Basically, replace

@ISA = qw/Foo Bar/;

with

extends(qw/Foo Bar/);

DETAILS
An accessor generated by Class::Accessor looks something like this:

Your foo may vary.
sub foo {

my($self) = shift;
if(@_) { # set

return $self−>set('foo', @_);
}
else {

return $self−>get('foo');
}

}

Very simple. All it does is determine if you’re wanting to set a value or get a value and calls the appropriate

method. Class::Accessor provides default get() and set() methods which your class can override. They’re

detailed later.

Modifying the behavior of the accessor

Rather than actually modifying the accessor itself, it is much more sensible to simply override the two key

methods which the accessor calls. Namely set() and get().

If you −really− want to, you can override make_accessor().

set

$obj−>set($key, $value);
$obj−>set($key, @values);

set() defines how generally one stores data in the object.

override this method to change how data is stored by your accessors.

get

$value = $obj−>get($key);
@values = $obj−>get(@keys);

get() defines how data is retrieved from your objects.

override this method to change how it is retrieved.

make_accessor

$accessor = __PACKAGE_ _−>make_accessor($field);

Generates a subroutine reference which acts as an accessor for the given $field. It calls get() and set().

If you wish to change the behavior of your accessors, try overriding get() and set() before you start mucking

with make_accessor().

make_ro_accessor

$read_only_accessor = __PACKAGE_ _−>make_ro_accessor($field);

Generates a subroutine reference which acts as a read-only accessor for the given $field. It only calls

get().

Override get() to change the behavior of your accessors.

perl v5.26.1 2017-10-24 4

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

make_wo_accessor

$write_only_accessor = __PACKAGE_ _−>make_wo_accessor($field);

Generates a subroutine reference which acts as a write-only accessor (mutator) for the given $field. It

only calls set().

Override set() to change the behavior of your accessors.

EXCEPTIONS
If something goes wrong Class::Accessor will warn or die by calling Carp::carp or Carp::croak. If you

don’t like this you can override _carp() and _croak() in your subclass and do whatever else you want.

EFFICIENCY
Class::Accessor does not employ an autoloader, thus it is much faster than you’d think. Its generated

methods incur no special penalty over ones you’d write yourself.

accessors:
Rate Basic Fast Faster Direct

Basic 367589/s −− −51% −55% −89%
Fast 747964/s 103% −− −9% −77%
Faster 819199/s 123% 10% −− −75%
Direct 3245887/s 783% 334% 296% −−

mutators:
Rate Acc Fast Faster Direct

Acc 265564/s −− −54% −63% −91%
Fast 573439/s 116% −− −21% −80%
Faster 724710/s 173% 26% −− −75%
Direct 2860979/s 977% 399% 295% −−

Class::Accessor::Fast is faster than methods written by an average programmer (where ‘‘average’’ is based

on Schwern’s example code).

Class::Accessor is slower than average, but more flexible.

Class::Accessor::Faster is even faster than Class::Accessor::Fast. It uses an array internally, not a hash.

This could be a good or bad feature depending on your point of view.

Direct hash access is, of course, much faster than all of these, but it provides no encapsulation.

Of course, it’s not as simple as saying ‘‘Class::Accessor is slower than average’’. These are benchmarks for

a simple accessor. If your accessors do any sort of complicated work (such as talking to a database or

writing to a file) the time spent doing that work will quickly swamp the time spend just calling the accessor.

In that case, Class::Accessor and the ones you write will be roughly the same speed.

EXAMPLES
Here’s an example of generating an accessor for every public field of your class.

package Altoids;

use base qw(Class::Accessor Class::Fields);
use fields qw(curiously strong mints);
Altoids−>mk_accessors(Altoids−>show_fields('Public'));

sub new {
my $proto = shift;
my $class = ref $proto || $proto;
return fields::new($class);

}

my Altoids $tin = Altoids−>new;

perl v5.26.1 2017-10-24 5

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

$tin−>curiously('Curiouser and curiouser');
print $tin−>{curiously}; # prints 'Curiouser and curiouser'

Subclassing works, too.
package Mint::Snuff;
use base qw(Altoids);

my Mint::Snuff $pouch = Mint::Snuff−>new;
$pouch−>strong('Blow your head off!');
print $pouch−>{strong}; # prints 'Blow your head off!'

Here’s a simple example of altering the behavior of your accessors.

package Foo;
use base qw(Class::Accessor);
Foo−>mk_accessors(qw(this that up down));

sub get {
my $self = shift;

Note every time someone gets some data.
print STDERR "Getting @_\n";

$self−>SUPER::get(@_);
}

sub set {
my ($self, $key) = splice(@_, 0, 2);

Note every time someone sets some data.
print STDERR "Setting $key to @_\n";

$self−>SUPER::set($key, @_);
}

CAVEATS AND TRICKS
Class::Accessor has to do some internal wackiness to get its job done quickly and efficiently. Because of

this, there’s a few tricks and traps one must know about.

Hey, nothing’s perfect.

Don’t make a field called DESTROY

This is bad. Since DESTROY is a magical method it would be bad for us to define an accessor using that

name. Class::Accessor will carp if you try to use it with a field named ‘‘DESTROY’’.

Overriding autogenerated accessors

You may want to override the autogenerated accessor with your own, yet have your custom accessor call

the default one. For instance, maybe you want to have an accessor which checks its input. Normally, one

would expect this to work:

package Foo;
use base qw(Class::Accessor);
Foo−>mk_accessors(qw(email this that whatever));

Only accept addresses which look valid.
sub email {

my($self) = shift;
my($email) = @_;

perl v5.26.1 2017-10-24 6

Class::Accessor(3pm) User Contributed Perl Documentation Class::Accessor(3pm)

if(@_) { # Setting
require Email::Valid;
unless(Email::Valid−>address($email)) {

carp("$email doesn't look like a valid address.");
return;

}
}

return $self−>SUPER::email(@_);
}

There’s a subtle problem in the last example, and it’s in this line:

return $self−>SUPER::email(@_);

If we look at how Foo was defined, it called mk_accessors() which stuck email() right into Foo’s

namespace. There *is* no SUPER::email() to delegate to! Tw o ways around this... first is to make a

‘‘pure’’ base class for Foo. This pure class will generate the accessors and provide the necessary super

class for Foo to use:

package Pure::Organic::Foo;
use base qw(Class::Accessor);
Pure::Organic::Foo−>mk_accessors(qw(email this that whatever));

package Foo;
use base qw(Pure::Organic::Foo);

And now Foo::email() can override the generated Pure::Organic::Foo::email() and use it as

SUPER::email().

This is probably the most obvious solution to everyone but me. Instead, what first made sense to me was

for mk_accessors() to define an alias of email(), _email_accessor(). Using this solution, Foo::email()

would be written with:

return $self−>_email_accessor(@_);

instead of the expected SUPER::email().

AUTHORS
Copyright 2017 Marty Pauley <marty+perl@martian.org>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

That means either (a) the GNU General Public License or (b) the Artistic License.

ORIGINAL AUTHOR

Michael G Schwern <schwern@pobox.com>

THANKS

Liz and RUZ for performance tweaks.

Tels, for his big feature request/bug report.

Various presenters at YAPC::Asia 2009 for criticising the non-Moose interface.

SEE ALSO
See Class::Accessor::Fast and Class::Accessor::Faster if speed is more important than flexibility.

These are some modules which do similar things in different ways Class::Struct, Class::Methodmaker,

Class::Generate, Class::Class, Class::Contract, Moose, Mouse

See Class::DBI for an example of this module in use.

perl v5.26.1 2017-10-24 7

