Email::Valid(3pm) User Contributed Perl Documentation Email::Valid(3pm)

NAME
Email::Valid — Check validity of Internet email addresses
VERSION
version 1.202
SYNOPSIS
use Email::Valid;
my S$address = Email::Valid->address ('maurice@hevanet.com');
print ($address ? 'yes' : 'no');
DESCRIPTION

This module determines whether an email address is well-formed, and optionally, whether a mail host
exists for the domain.

Please note that there is no way to determine whether an address is deliverable without attempting delivery
(for details, see perlfaq 9 <http://perldoc.perl.org/perlfaq9.html#How-do-I-check-a-valid-mail-address>).

PREREQUISITES

This module requires perl 5.004 or later and the Mail::Address module. Either the Net::DNS module or the
nslookup utility is required for DNS checks. The Net::Domain::TLD module is required to check the
validity of top level domains.

METHODS

Every method which accepts an <ADDRESS> parameter may be passed either a string or an instance of the
Mail::Address class. All errors raise an exception.

new ([PARAMS])
This method is used to construct an Email::Valid object. It accepts an optional list of named
parameters to control the behavior of the object at instantiation.

The following named parameters are allowed. See the individual methods below for details.

—-mxcheck
—tldcheck
—fudge

—fqgdn
—allow_ip
—local_rules

mx (<ADDRESS>|<DOMAIN>)
This method accepts an email address or domain name and determines whether a DNS record (A or
MX) exists for it.

The method returns true if a record is found and undef if not.

Either the Net::DNS module or the nslookup utility is required for DNS checks. Using Net::DNS is
the preferred method since error handling is improved. If Net::DNS is available, you can modify the
behavior of the resolver (e.g. change the default tcp_timeout value) by manipulating the global
Net::DNS::Resolver instance stored in $Email: :Valid: :Resolver.

fc822 (<ADDRESS>)
This method determines whether an address conforms to the RFC822 specification (except for nested
comments). It returns true if it conforms and undef if not.

fudge (<TRUE>|<FALSE>)
Specifies whether calls to address() should attempt to correct common addressing errors. Currently,
this results in the removal of spaces in AOL addresses, and the conversion of commas to periods in
Compuserve addresses. The default is false.

allow_ip (<TRUE>|<FALSE>)
Specifies whether a “‘domain literal” is acceptable as the domain part. That means addresses like:
rjbs@[1.2.3.4]

perl v5.24.1 2016-10-04 1

Email::Valid(3pm) User Contributed Perl Documentation Email::Valid(3pm)

The checking for the domain literal is stricter than the RFC and looser than checking for a valid IP
address, but this is subject to change.

The default is true.

fqdn (<TRUE>|<FALSE>)
Specifies whether addresses passed to address() must contain a fully qualified domain name (FQDN).
The default is true.

Please note! FQDN checks only occur for non-domain-literals. In other words, if you have set
allow_1ip and the address ends in a bracketed IP address, the FQDN check will not occur.

tld (<ADDRESS>)
This method determines whether the domain part of an address is in a recognized top-level domain.

Please note! TLD checks only occur for non-domain-literals. In other words, if you have set
allow_1ip and the address ends in a bracketed IP address, the TLD check will not occur.

local_rules (<TRUE>|<FALSE>)
Specifies whether addresses passed to address() should be tested for domain specific restrictions.
Currently, this is limited to certain AOL restrictions that I’'m aware of. The default is false.

mxcheck (<TRUE>|<FALSE>)
Specifies whether addresses passed to address() should be checked for a valid DNS entry. The default
is false.

tldcheck (<TRUE>|<FALSE>)
Specifies whether addresses passed to address() should be checked for a valid top level domains. The
default is false.

address (<ADDRESS>)
This is the primary method which determines whether an email address is valid. Its behavior is
modified by the values of mxcheck(), tldcheck(), local_rules(), fqdn(), and fudge(). If the address
passes all checks, the (possibly modified) address is returned as a string. Otherwise, undef is returned.
In a list context, the method also returns an instance of the Mail:: Address class representing the email
address.

details ()
If the last call to address() returned undef, you can call this method to determine why it failed.
Possible values are:

rfc822
localpart
local_rules
fgdn
mxcheck
tldcheck
If the class is not instantiated, you can get the same information from the global
SEmail::Valid: :Details.
EXAMPLES
Let’s see if the address "'maurice @hevanet.com’ conforms to the RFC822 specification:
print (Email::Valid->address ('maurice@hevanet.com') ? 'yes' : 'no');
Additionally, let’s make sure there’s a mail host for it:
print (Email::Valid->address(—-address => 'maurice@hevanet.com',
-mxcheck => 1) ? 'yes' : 'no');

Let’s see an example of how the address may be modified:

perl v5.24.1 2016-10-04 2

Email::Valid(3pm) User Contributed Perl Documentation Email::Valid(3pm)

$addr = Email::Valid->address ('Alfred Neuman <Neuman @ foo.bar>');
print "$addr\n"; # prints Neuman@foo.bar

Now let’s add the check for top level domains:

Saddr = Email::Valid->address(—-address => 'Neuman@foo.bar',
—-tldcheck => 1);
print "$addr\n"; # doesn't print anything

Need to determine why an address failed?

unless (Email::Valid->address ('maurice@hevanet')) {
print "address failed $Email::Valid::Details check.\n";
}

If an error is encountered, an exception is raised. This is really only possible when performing DNS
queries. Trap any exceptions by wrapping the call in an eval block:

eval {
$addr = Email::Valid->address(—address => 'maurice@hevanet.com',
-mxcheck => 1);
i
warn "an error was encountered: $Q" if $@;
CREDITS

Significant portions of this module are based on the ckaddr program written by Tom Christiansen and the
RFC822 address pattern developed by Jeffrey Friedl. Neither were involved in the construction of this
module; all errors are mine.

Thanks very much to the following people for their suggestions and bug fixes:

Otis Gospodnetic <otis@DOMINIS.com>

Kim Ryan <kimaryan@ozemail.com.au>

Pete Ehlke <pde@Rlistserv.music.sony.com>
Lupe Christoph

David Birnbaum

Achim
Elizabeth Mattijsen (liz@dijkmat.nl)
SEE ALSO
Mail::Address, Net::DNS, Net::Domain::TLD, perlfaq9

<https://metacpan.org/pod/distribution/perlfaq/lib/perlfaq9.pod>

RFC822 <https://www.ietf.org/rfc/rfc0822.txt> — standard for the format of ARPA internet text messages.
Superseded by RFC2822 <https://www.ietf.org/rfc/rfc2822.txt>.

AUTHOR

Maurice Aubrey <maurice @hevanet.com>

CONTRIBUTORS

e Alexandr Ciornii <alexchorny @ gmail.com>

* Karel Miko <karel.miko @ gmail.com>

* McA <McA@github.com>

e Michael Schout <mschout@gkg.net>

* Mohammad S Anwar <mohammad.anwar @yahoo.com>
* Neil Bowers <neil@bowers.com>

* Ricardo SIGNES <rjbs@cpan.org>

* Steve Bertrand <steveb@cpan.org>

perl v5.24.1 2016-10-04 3

Email::Valid(3pm) User Contributed Perl Documentation Email::Valid(3pm)

* Svetlana <svetlana.wiczer @ gmail.com>

* Troy Morehouse <troymore @nbnet.nb.ca>

COPYRIGHT AND LICENSE
This software is copyright (c) 1998 by Maurice Aubrey.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.24.1 2016-10-04 4

