
Exporter::Tiny::Manual::QuickStart(3pm)User Contributed Perl DocumentationExporter::Tiny::Manual::QuickStart(3pm)

NAME
Exporter::Tiny::Manual::QuickStart − the quickest way to get up and running with Exporter::Tiny

SYNOPSIS
package MyUtils;

use Exporter::Shiny qw( frobnicate );

sub frobnicate {

...; # your code here

}

1;

Now people can use your module like this:

use MyUtils "frobnicate";

frobnicate(42);

Or like this:

use MyUtils "frobnicate" => { −as => "frob" };

frob(42);

DESCRIPTION
See the synopsis. Yes, it’s that simple.

Next steps

Default exports

Note that the module in the synopsis doesn’t export anything by default. If people load MyUtils like this:

use MyUtils;

Then they hav en’t imported any functions. You can specify a default set of functions to be exported like

this:

package MyUtils;

use Exporter::Shiny qw( frobnicate );

our @EXPORT = qw( frobnicate );

sub frobnicate { ... }

1;

Or, if you want to be a superstar rock god:

package MyUtils;

use Exporter::Shiny our @EXPORT = qw( frobnicate );

sub frobnicate { ... }

1;

Ta gs

You can provide tags for people to use:

perl v5.26.2 2018-07-26 1



Exporter::Tiny::Manual::QuickStart(3pm)User Contributed Perl DocumentationExporter::Tiny::Manual::QuickStart(3pm)

package MyUtils;

use Exporter::Shiny qw( frobnicate red green blue );

our %EXPORT_TAGS = (

utils => [qw/ frobnicate /],

colours => [qw/ red green blue /],

);

sub frobnicate { ... }

sub red { ... }

sub green { ... }

sub blue { ... }

1;

And people can now import your functions like this:

use MyUtils ":colours";

Or this:

use MyUtils "−colours";

Or take advantage of the fact that Perl magically quotes barewords preceded by a hyphen:

use MyUtils −colours;

Tw o tags are automatically defined for you: −default (which is just the same as @EXPORT) and −all

(which is the union of @EXPORT and @EXPORT_OK). If you don’t like them, then you can override them:

our %EXPORT_TAGS = (

default => \@some_other_stuff,

all => \@more_stuff,

);

Generators

Exporting normally just works by copying a sub from your package into your caller’s package. But

sometimes it’s useful instead to generate a custom sub to insert into your caller’s package. This is pretty

easy to do.

package MyUtils;

use Exporter::Shiny qw( frobnicate );

sub _generate_frobnicate {

my $me = shift;

my $caller = caller;

my ($name, $args) = @_;

return sub {

...; # your code here

};

}

1;

The parameter $me here is a string containing the package name which is being imported from; $caller

is the destination package; $name is the name of the sub (in this case ‘‘frobnicate’’); and $args is a

hashref of custom arguments for this function.

perl v5.26.2 2018-07-26 2



Exporter::Tiny::Manual::QuickStart(3pm)User Contributed Perl DocumentationExporter::Tiny::Manual::QuickStart(3pm)

# The hashref { foo => 42 } is $args above.

#

use MyUtils "frobnicate" => { foo => 42 };

Av oiding Exporter::Shiny

Exporter::Shiny is a tiny shim around Exporter::Tiny. It should mostly do what you want, but you may

sometimes prefer to use Exporter::Tiny directly.

The example in the synopsis could have been written as:

package MyUtils;

use parent "Exporter::Tiny";

our @EXPORT_OK = qw( frobnicate );

sub frobnicate {

...; # your code here

}

1;

What Exporter::Shiny does is mostly just to set @EXPORT_OK for you and set up inheritance from the base

class (Exporter::Tiny).

Exporter::Shiny also sets $INC{'MyUtils.pm} for you, which in usually makes little difference, but is

useful in some edge cases.

SEE ALSO
Exporter::Shiny, Exporter::Tiny.

For more advanced information, see Exporter::Tiny::Manual::Exporting.

AUTHOR
Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE
This software is copyright (c) 2013−2014, 2017 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

DISCLAIMER OF WARRANTIES
THIS PACKAGE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

perl v5.26.2 2018-07-26 3


