
File::Find::Rule(3pm) User Contributed Perl Documentation File::Find::Rule(3pm)

NAME
File::Find::Rule − Alternative interface to File::Find

SYNOPSIS
use File::Find::Rule;
find all the subdirectories of a given directory
my @subdirs = File::Find::Rule−>directory−>in($directory);

find all the .pm files in @INC
my @files = File::Find::Rule−>file()

−>name('*.pm')
−>in(@INC);

as above, but without method chaining
my $rule = File::Find::Rule−>new;
$rule−>file;
$rule−>name('*.pm');
my @files = $rule−>in(@INC);

DESCRIPTION
File::Find::Rule is a friendlier interface to File::Find. It allows you to build rules which specify the desired

files and directories.

METHODS
new

A constructor. You need not invoke new manually unless you wish to, as each of the rule-making

methods will auto-create a suitable object if called as class methods.

Matching Rules

name(@patterns)
Specifies names that should match. May be globs or regular expressions.

$set−>name('*.mp3', '*.ogg'); # mp3s or oggs
$set−>name(qr/\.(mp3|ogg)$/); # the same as a regex
$set−>name('foo.bar'); # just things named foo.bar

−X tests

Synonyms are provided for each of the −X tests. See ‘‘−X’’ in perlfunc for details. None of these

methods take arguments.

Test | Method Test | Method
−−−−−−|−−−−−−−−−−−−− −−−−−−|−−−−−−−−−−−−−−−−
−r | readable −R | r_readable
−w | writeable −W | r_writeable
−w | writable −W | r_writable
−x | executable −X | r_executable
−o | owned −O | r_owned

| |
−e | exists −f | file
−z | empty −d | directory
−s | nonempty −l | symlink

| −p | fifo
−u | setuid −S | socket
−g | setgid −b | block
−k | sticky −c | character

| −t | tty
−M | modified |
−A | accessed −T | ascii

perl v5.20.2 2015-12-06 1

File::Find::Rule(3pm) User Contributed Perl Documentation File::Find::Rule(3pm)

−C | changed −B | binary

Though some tests are fairly meaningless as binary flags (modified, accessed, changed), they

have been included for completeness.

find nonempty files
$rule−>file,

−>nonempty;

stat tests

The following stat based methods are provided: dev, ino, mode, nlink, uid, gid, rdev,

size, atime, mtime, ctime, blksize, and blocks. See ‘‘stat’’ in perlfunc for details.

Each of these can take a number of targets, which will follow Number::Compare semantics.

$rule−>size(7); # exactly 7
$rule−>size(">7Ki"); # larger than 7 * 1024 * 1024 bytes
$rule−>size(">=7")

−>size("<=90"); # between 7 and 90, inclusive
$rule−>size(7, 9, 42); # 7, 9 or 42

any(@rules)
or(@rules)

Allows shortcircuiting boolean evaluation as an alternative to the default and-like nature of combined

rules. any and or are interchangeable.

find avis, movs, things over 200M and empty files
$rule−>any(File::Find::Rule−>name('*.avi', '*.mov'),

File::Find::Rule−>size('>200M'),
File::Find::Rule−>file−>empty,

);

none(@rules)
not(@rules)

Negates a rule. (The inverse of any.) none and not are interchangeable.

files that aren't 8.3 safe
$rule−>file

−>not($rule−>new−>name(qr/ˆ[ˆ.]{1,8}(\.[ˆ.]{0,3})?$/));

prune
Trav erse no further. This rule always matches.

discard
Don’t keep this file. This rule always matches.

exec(\&subroutine($shortname, $path, $fullname))
Allows user-defined rules. Your subroutine will be invoked with $_ set to the current short name, and

with parameters of the name, the path you’re in, and the full relative filename.

Return a true value if your rule matched.

get things with long names
$rules−>exec(sub { length > 20 });

grep(@specifiers)
Opens a file and tests it each line at a time.

For each line it evaluates each of the specifiers, stopping at the first successful match. A specifier may

be a regular expression or a subroutine. The subroutine will be invoked with the same parameters as

an −>exec subroutine.

It is possible to provide a set of negative specifiers by enclosing them in anonymous arrays. Should a

negative specifier match the iteration is aborted and the clause is failed. For example:

perl v5.20.2 2015-12-06 2

File::Find::Rule(3pm) User Contributed Perl Documentation File::Find::Rule(3pm)

$rule−>grep(qr/ˆ#!.*\bperl/, [sub { 1 }]);

Is a passing clause if the first line of a file looks like a perl shebang line.

maxdepth($level)
Descend at most $level (a non-negative integer) levels of directories below the starting point.

May be invoked many times per rule, but only the most recent value is used.

mindepth($level)
Do not apply any tests at levels less than $level (a non-negative integer).

extras(\%extras)
Specifies extra values to pass through to File::File::find as part of the options hash.

For example this allows you to specify following of symlinks like so:

my $rule = File::Find::Rule−>extras({ follow => 1 });

May be invoked many times per rule, but only the most recent value is used.

relative
Trim the leading portion of any path found

canonpath
Normalize paths found using File::Spec−canonpath>. This will return paths with a file-seperator

that is native to your OS (as determined by File::Spec),

instead of the default /.

For example, this will return tmp/foobar on Unix-ish OSes and tmp\foobar on Win32.

not_*
Negated version of the rule. An effective shortand related to ! in the procedural interface.

$foo−>not_name('*.pl');

$foo−>not($foo−>new−>name('*.pl'));

Query Methods

in(@directories)
Evaluates the rule, returns a list of paths to matching files and directories.

start(@directories)
Starts a find across the specified directories. Matching items may then be queried using ‘‘match’’.

This allows you to use a rule as an iterator.

my $rule = File::Find::Rule−>file−>name("*.jpeg")−>start("/web");
while (defined (my $image = $rule−>match)) {

...
}

match
Returns the next file which matches, false if there are no more.

Extensions

Extension modules are available from CPAN in the File::Find::Rule namespace. In order to use these

extensions either use them directly:

use File::Find::Rule::ImageSize;
use File::Find::Rule::MMagic;

now your rules can use the clauses supplied by the ImageSize and
MMagic extension

or, specify that File::Find::Rule should load them for you:

perl v5.20.2 2015-12-06 3

File::Find::Rule(3pm) User Contributed Perl Documentation File::Find::Rule(3pm)

use File::Find::Rule qw(:ImageSize :MMagic);

For notes on implementing your own extensions, consult File::Find::Rule::Extending

Further examples

Finding perl scripts

my $finder = File::Find::Rule−>or
(
File::Find::Rule−>name('*.pl'),
File::Find::Rule−>exec(

sub {
if (open my $fh, $_) {

my $shebang = <$fh>;
close $fh;
return $shebang =˜ /ˆ#!.*\bperl/;

}
return 0;

}),
);

Based upon this message http://use.perl.org/comments.pl?sid=7052&cid=10842

ignore CVS directories

my $rule = File::Find::Rule−>new;
$rule−>or($rule−>new

−>directory
−>name('CVS')
−>prune
−>discard,

$rule−>new);

Note here the use of a null rule. Null rules match anything they see, so the effect is to match (and

discard) directories called ’CVS’ or to match anything.

TWO FOR THE PRICE OF ONE
File::Find::Rule also gives you a procedural interface. This is documented in File::Find::Rule::Procedural

EXPORTS
‘‘find’’, ‘‘rule’’

TAINT MODE INTERACTION
As of 0.32 File::Find::Rule doesn’t capture the current working directory in a taint-unsafe manner.

File::Find itself still does operations that the taint system will flag as insecure but you can use the ‘‘extras’’

feature to ask File::Find to internally untaint file paths with a regex like so:

my $rule = File::Find::Rule−>extras({ untaint => 1 });

Please consult File::Find’s documentation for untaint, untaint_pattern, and untaint_skip for

more information.

BUGS
The code makes use of the our keyword and as such requires perl version 5.6.0 or newer.

Currently it isn’t possible to remove a clause from a rule object. If this becomes a significant issue it will

be addressed.

AUTHOR
Richard Clamp <richardc@unixbeard.net> with input gained from this use.perl discussion:

http://use.perl.org/˜richardc/journal/6467

Additional proofreading and input provided by Kake, Greg McCarroll, and Andy Lester

andy@petdance.com.

perl v5.20.2 2015-12-06 4

File::Find::Rule(3pm) User Contributed Perl Documentation File::Find::Rule(3pm)

COPYRIGHT
Copyright (C) 2002, 2003, 2004, 2006, 2009, 2011 Richard Clamp. All Rights Reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

SEE ALSO
File::Find, Text::Glob, Number::Compare, find (1)

If you want to know about the procedural interface, see File::Find::Rule::Procedural, and if you have an

idea for a neat extension File::Find::Rule::Extending

perl v5.20.2 2015-12-06 5

