HTML.::LinkExtor(3pm) User Contributed Perl Documentation HTML::LinkExtor(3pm)

NAME
HTML::LinkExtor — Extract links from an HTML document

SYNOPSIS
require HTML: :LinkExtor;
$p = HTML::LinkExtor->new (\&cb, "http://www.perl.org/");
sub cb {
my ($tag, %$links) = @_;
print "$tag @{[%1links]}\n";
}
Sp—>parse_file("index.html");

DESCRIPTION
HTML::LinkExtor is an HTML parser that extracts links from an HTML document. The HTML::LinkExtor
is a subclass of HTML::Parser. This means that the document should be given to the parser by calling the
$p—>parse() or Sp—>parse_file() methods.

$p = HTML::LinkExtor—>new

$p = HTML::LinkExtor—->new($callback)

$p = HTML::LinkExtor—->new($callback, $base)
The constructor takes two optional arguments. The first is a reference to a callback routine. It will be
called as links are found. If a callback is not provided, then links are just accumulated internally and
can be retrieved by calling the $p—>links() method.

The $base argument is an optional base URL used to absolutize all URLs found. You need to have
the URI module installed if you provide $base.

The callback is called with the lowercase tag name as first argument, and then all link attributes as
separate key/value pairs. All non-link attributes are removed.

$Sp—>links
Returns a list of all links found in the document. The returned values will be anonymous arrays with
the following elements:

[$Stag, Sattr => S$Surll, S$Sattr2 => Surl2,...]

The $p—>links method will also truncate the internal link list. This means that if the method is called
twice without any parsing between them the second call will return an empty list.

Also note that $p—>links will always be empty if a callback routine was provided when the
HTML::LinkExtor was created.

EXAMPLE

This is an example showing how you can extract links from a document received using LWP:

use LWP::UserAgent;
use HTML: :LinkExtor;
use URI: :URL;

Surl = "http://www.perl.org/"; # for instance
Sua = LWP::UserAgent->new;

Set up a callback that collect image links

my Q@imgs = ();

sub callback {
my ($tag, %attr) = @_;
return if $tag ne 'img'; # we only look closer at
push (@imgs, values %attr);

}

Make the parser. Unfortunately, we don't know the base yet

perl v5.30.0 2020-02-18 1

HTML.::LinkExtor(3pm) User Contributed Perl Documentation HTML::LinkExtor(3pm)

(it might be different from $url)
$Sp = HTML: :LinkExtor->new (\&callback);

Request document and parse it as it arrives
Sres = Sua->request (HTTP: :Request->new (GET => S$url),
sub {S$p—>parse($_[0]1)});

Expand all image URLs to absolute ones
my Sbase = S$Sres->base;
@imgs = map { $_ = url($_, S$base)->abs; } Q@imgs;

Print them out

print join("\n", @imgs), "\n";

SEE ALSO
HTML::Parser, HTML:: Tagset, LWP, URL::URL

COPYRIGHT
Copyright 1996-2001 Gisle Aas.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

perl v5.30.0 2020-02-18 2

