
IO::HTML(3pm) User Contributed Perl Documentation IO::HTML(3pm)

NAME
IO::HTML − Open an HTML file with automatic charset detection

VERSION
This document describes version 1.001 of IO::HTML, released June 28, 2014.

SYNOPSIS
use IO::HTML; # exports html_file by default

use HTML::TreeBuilder;

my $tree = HTML::TreeBuilder−>new_from_file(

html_file('foo.html')

);

Alternative interface:

open(my $in, '<:raw', 'bar.html');

my $encoding = IO::HTML::sniff_encoding($in, 'bar.html');

DESCRIPTION
IO::HTML provides an easy way to open a file containing HTML while automatically determining its

encoding. It uses the HTML5 encoding sniffing algorithm specified in section 8.2.2.2 of the draft standard.

The algorithm as implemented here is:

1. If the file begins with a byte order mark indicating UTF−16LE, UTF−16BE, or UTF−8, then that is the

encoding.

2. If the first 1024 bytes of the file contain a <meta> tag that indicates the charset, and Encode

recognizes the specified charset name, then that is the encoding. (This portion of the algorithm is

implemented by find_charset_in.)

The <meta> tag can be in one of two formats:

<meta charset="...">

<meta http−equiv="Content−Type" content="...charset=...">

The search is case-insensitive, and the order of attributes within the tag is irrelevant. Any additional

attributes of the tag are ignored. The first matching tag with a recognized encoding ends the search.

3. If the first 1024 bytes of the file are valid UTF−8 (with at least 1 non-ASCII character), then the

encoding is UTF−8.

4. If all else fails, use the default character encoding. The HTML5 standard suggests the default encoding

should be locale dependent, but currently it is always cp1252 unless you set

$IO::HTML::default_encoding to a different value. Note: sniff_encoding does not

apply this step; only html_file does that.

SUBROUTINES
html_file

$filehandle = html_file($filename, \%options);

This function (exported by default) is the primary entry point. It opens the file specified by $filename

for reading, uses sniff_encoding to find a suitable encoding layer, and applies it. It also applies the

:crlf layer. If the file begins with a BOM, the filehandle is positioned just after the BOM.

The optional second argument is a hashref containing options. The possible keys are described under

find_charset_in.

If sniff_encoding is unable to determine the encoding, it defaults to

$IO::HTML::default_encoding, which is set to cp1252 (a.k.a. Windows−1252) by default.

According to the standard, the default should be locale dependent, but that is not currently implemented.

It dies if the file cannot be opened.

perl v5.18.2 2014-06-28 1

IO::HTML(3pm) User Contributed Perl Documentation IO::HTML(3pm)

html_file_and_encoding

($filehandle, $encoding, $bom)

= html_file_and_encoding($filename, \%options);

This function (exported only by request) is just like html_file, but returns more information. In

addition to the filehandle, it returns the name of the encoding used, and a flag indicating whether a byte

order mark was found (if $bom is true, the file began with a BOM). This may be useful if you want to write

the file out again (especially in conjunction with the html_outfile function).

The optional second argument is a hashref containing options. The possible keys are described under

find_charset_in.

It dies if the file cannot be opened. The result of calling it in scalar context is undefined.

html_outfile

$filehandle = html_outfile($filename, $encoding, $bom);

This function (exported only by request) opens $filename for output using $encoding, and writes a

BOM to it if $bom is true. If $encoding is undef, it defaults to

$IO::HTML::default_encoding. $encoding may be either an encoding name or an

Encode::Encoding object.

It dies if the file cannot be opened.

sniff_encoding

($encoding, $bom) = sniff_encoding($filehandle, $filename, \%options);

This function (exported only by request) runs the HTML5 encoding sniffing algorithm on $filehandle

(which must be seekable, and should have been opened in :raw mode). $filename is used only for

error messages (if there’s a problem using the filehandle), and defaults to ‘‘file’’ if omitted. The optional

third argument is a hashref containing options. The possible keys are described under

find_charset_in.

It returns Perl’s canonical name for the encoding, which is not necessarily the same as the MIME or IANA

charset name. It returns undef if the encoding cannot be determined. $bom is true if the file began with a

byte order mark. In scalar context, it returns only $encoding.

The filehandle’s position is restored to its original position (normally the beginning of the file) unless $bom

is true. In that case, the position is immediately after the BOM.

Tip: If you want to run sniff_encoding on a file you’ve already loaded into a string, open an in-

memory file on the string, and pass that handle:

($encoding, $bom) = do {

open(my $fh, '<', \$string); sniff_encoding($fh)

};

(This only makes sense if $string contains bytes, not characters.)

find_charset_in

$encoding = find_charset_in($string_containing_HTML, \%options);

This function (exported only by request) looks for charset information in a <meta> tag in a possibly

incomplete HTML document using the ‘‘two step’’ algorithm specified by HTML5. It does not look for a

BOM. Only the first 1024 bytes of the string are checked.

It returns Perl’s canonical name for the encoding, which is not necessarily the same as the MIME or IANA

charset name. It returns undef if no charset is specified or if the specified charset is not recognized by the

Encode module.

The optional second argument is a hashref containing options. The following keys are recognized:

encoding

If true, return the Encode::Encoding object instead of its name. Defaults to false.

perl v5.18.2 2014-06-28 2

IO::HTML(3pm) User Contributed Perl Documentation IO::HTML(3pm)

need_pragma

If true (the default), follow the HTML5 spec and examine the content attribute only of <meta

http−equiv="Content−Type". If set to 0, relax the HTML5 spec, and look for ‘‘charset=’’ in

the content attribute of every meta tag.

EXPORTS
By default, only html_file is exported. Other functions may be exported on request.

For people who prefer not to export functions, all functions beginning with html_ have an alias without

that prefix (e.g. you can call IO::HTML::file(...) instead of IO::HTML::html_file(...).

These aliases are not exportable.

The following export tags are available:

:all

All exportable functions.

:rw

html_file, html_file_and_encoding, html_outfile.

SEE ALSO
The HTML5 specification, section 8.2.2.2 Determining the character encoding:

<http://www.w3.org/TR/html5/syntax.html#determining−the−character−encoding>

DIAGNOSTICS
Could not read %s: %s

The specified file could not be read from for the reason specified by $!.

Could not seek %s: %s

The specified file could not be rewound for the reason specified by $!.

Failed to open %s: %s

The specified file could not be opened for reading for the reason specified by $!.

No default encoding specified

The sniff_encoding algorithm didn’t find an encoding to use, and you set

$IO::HTML::default_encoding to undef.

CONFIGURATION AND ENVIRONMENT
IO::HTML requires no configuration files or environment variables.

DEPENDENCIES
IO::HTML has no non-core dependencies for Perl 5.8.7+. With earlier versions of Perl 5.8, you need to

upgrade Encode to at least version 2.10, and you may need to upgrade Exporter to at least version 5.57.

INCOMPATIBILITIES
None reported.

BUGS AND LIMITATIONS
No bugs have been reported.

AUTHOR
Christopher J. Madsen <perl AT cjmweb.net>

Please report any bugs or feature requests to <bug−IO−HTML AT rt.cpan.org> or through the web

interface at <http://rt.cpan.org/Public/Bug/Report.html?Queue=IO−HTML>.

You can follow or contribute to IO-HTML’s dev elopment at <https://github.com/madsen/io−html>.

COPYRIGHT AND LICENSE
This software is copyright (c) 2014 by Christopher J. Madsen.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

perl v5.18.2 2014-06-28 3

IO::HTML(3pm) User Contributed Perl Documentation IO::HTML(3pm)

DISCLAIMER OF WARRANTY
BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE

SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED

IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE SOFTWARE ‘‘AS IS’’

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH

YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR, OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY

COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE

SOFTWARE AS PERMITTED BY THE ABOVE LICENSE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING

ANY GENERAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DAT A OR DAT A BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

perl v5.18.2 2014-06-28 4

