
Import::Into(3pm) User Contributed Perl Documentation Import::Into(3pm)

NAME
Import::Into − Import packages into other packages

SYNOPSIS
package My::MultiExporter;

use Import::Into;

simple

sub import {

Thing1−>import::into(scalar caller);

}

multiple

sub import {

my $target = caller;

Thing1−>import::into($target);

Thing2−>import::into($target, qw(import arguments));

}

by level

sub import {

Thing1−>import::into(1);

}

with exporter

use base qw(Exporter);

sub import {

shift−>export_to_level(1);

Thing1−>import::into(1);

}

no My::MultiExporter == no Thing1

sub unimport {

Thing1−>unimport::out_of(scalar caller);

}

People wanting to re-export your module should also be using Import::Into. Any exporter or pragma will

work seamlessly.

Note: You do not need to make any changes to Thing1 to be able to call import::into on it. This is a

global method, and is callable on any package (and in fact on any object as well, although it’s rarer that

you’d want to do that).

DESCRIPTION
Writing exporters is a pain. Some use Exporter, some use Sub::Exporter, some use Moose::Exporter, some

use Exporter::Declare ... and some things are pragmas.

Exporting on someone else’s behalf is harder. The exporters don’t provide a consistent API for this, and

pragmas need to have their import method called directly, since they effect the current unit of compilation.

Import::Into provides global methods to make this painless.

METHODS
$package−>import::into($target, @arguments);

A global method, callable on any package. Loads and imports the given package into $target.

@arguments are passed along to the package’s import method.

$target can be an package name to export to, an integer for the caller level to export to, or a hashref with

perl v5.20.2 2015-08-28 1

Import::Into(3pm) User Contributed Perl Documentation Import::Into(3pm)

the following options:

package

The target package to export to.

filename

The apparent filename to export to. Some exporting modules, such as autodie or strictures, care about

the filename they are being imported to.

line The apparent line number to export to. To be combined with the filename option.

level

The caller level to export to. This will automatically populate the package, filename, and line

options, making it the easiest most constent option.

version

A version number to check for the module. The equivalent of specifying the version number on a use

line.

$package−>unimport::out_of($target, @arguments);

Equivalent to import::into, but dispatches to $package’s unimport method instead of import.

WHY USE THIS MODULE
The APIs for exporting modules aren’t consistent. Exporter subclasses provide export_to_level, but if they

overrode their import method all bets are off. Sub::Exporter provides an into parameter but figuring out

something used it isn’t trivial. Pragmas need to have their import method called directly since they affect

the current unit of compilation.

It’s ... annoying.

However, there is an approach that actually works for all of these types.

eval "package $target; use $thing;"

will work for anything checking caller, which is everything except pragmas. But it doesn’t work for

pragmas − pragmas need:

$thing−>import;

because they’re designed to affect the code currently being compiled − so within an eval, that’s the scope of

the eval itself, not the module that just used you − so

sub import {

eval "use strict;"

}

doesn’t do what you wanted, but

sub import {

strict−>import;

}

will apply strict to the calling file correctly.

Of course, now you have two new problems − first, that you still need to know if something’s a pragma, and

second that you can’t use either of these approaches alone on something like Moose or Moo that’s both an

exporter and a pragma.

So, a solution for that is:

use Module::Runtime;

my $sub = eval "package $target; sub { use_module(shift)−>import(\@_) }";

$sub−>($thing, @import_args);

which means that import is called from the right place for pragmas to take effect, and from the right

package for caller checking to work − and so behaves correctly for all types of exporter, for pragmas, and

for hybrids.

perl v5.20.2 2015-08-28 2

Import::Into(3pm) User Contributed Perl Documentation Import::Into(3pm)

Additionally, some import routines check the filename they are being imported to. This can be dealt with

by generating a #line directive in the eval, which will change what caller reports for the filename when

called in the importer. The filename and line number to use in the directive then need to be fetched using

caller:

my ($target, $file, $line) = caller(1);

my $sub = eval qq{

package $target;

#line $line "$file"

sub { use_module(shift)−>import(\@_) }

};

$sub−>($thing, @import_args);

And you need to switch between these implementations depending on if you are targeting a specific

package, or something in your call stack.

Remembering all this, however, is excessively irritating. So I wrote a module so I didn’t hav e to anymore.

Loading Import::Into creates a global method import::into which you can call on any package to

import it into another package. So now you can simply write:

use Import::Into;

$thing−>import::into($target, @import_args);

This works because of how perl resolves method calls − a call to a simple method name is resolved against

the package of the class or object, so

$thing−>method_name(@args);

is roughly equivalent to:

my $code_ref = $thing−>can('method_name');

$code_ref−>($thing, @args);

while if a :: is found, the lookup is made relative to the package name (i.e. everything before the last ::)

so

$thing−>Package::Name::method_name(@args);

is roughly equivalent to:

my $code_ref = Package::Name−>can('method_name');

$code_ref−>($thing, @args);

So since Import::Into defines a method into in package import the syntax reliably calls that.

For more craziness of this order, hav e a look at the article I wrote at

<http://shadow.cat/blog/matt−s−trout/madness−with−methods> which covers coderef abuse and the

${\...} syntax.

And that’s it.

SEE ALSO
I gav e a lightning talk on this module (and curry and Safe::Isa) at YAPC::NA 2013

<https://www.youtube.com/watch?v=wFXWV2yY7gE&t=46m05s>.

ACKNOWLEDGEMENTS
Thanks to Getty for asking "how can I get use strict; use warnings; turned on for all

consumers of my code?‘‘ and then ’’why is this not a module?!".

AUTHOR
mst − Matt S. Trout (cpan:MSTROUT) <mst@shadowcat.co.uk>

CONTRIBUTORS
haarg − Graham Knop (cpan:HAARG) <haarg@haarg.org>

perl v5.20.2 2015-08-28 3

Import::Into(3pm) User Contributed Perl Documentation Import::Into(3pm)

Mithaldu − Christian Walde (cpan:MITHALDU) <walde.christian@gmail.com>

COPYRIGHT
Copyright (c) 2012 the Import::Into ‘‘AUTHOR’’ and ‘‘CONTRIBUTORS’’ as listed above.

LICENSE
This library is free software and may be distributed under the same terms as perl itself.

perl v5.20.2 2015-08-28 4

